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111.1 
THEORY OF DISTRIBUTIONS· 

* Este texto tern por base apontamentos coligidos por diversos alunos de Jose SebastHio e 

Silva na sequencia de urn curso que realizou em 1958 na Universidade de Maryland, e que 

posteriormente foram utilizados, e por ele revistos, na Faculdade de Ciencias de Lisboa. 



CHAPTER VII 

DISTRIBUTIONS OF SEVERAL VARIABLES; 

FUNDAMENTAL CONCEPTS 

7.1. Intervals in IRn space 

Let n be any integer >1. Given two points, a = (a l ' ... , an) and 

b = (bp ... , bn) in the IR
n 

space, we shall write a < b , iff aj< bj for 

j=l, . . . , n, and a<b iff aj< bj for j=l, . . . , n. Then the bounded 

intervals ]a, b[, [a, b], ] a, b], [a, b[ with the extremities a, b are to be 

defined as in the case of one single dimension. For example, [a, b] is 

the set of all points x of IR 
n 

such that a s x s b (a rectangle in n = 2, 

a parallelepiped if n=3, etc). In turn, the set of all points x of IR
n 

such that a < x is the open interval ] a, + 00 n [, unbounded on the 

right. In any case, an interval I in IR
n 

is the Cartesian product of n 

intervals in IR. For example, if 1= [a, br, then 1=11 x 12 X • • •  x In' with 

11 = [ap hI [, ... , In= [an' bn[· 

In order to make the reciprocal of this statement also true, we 

shall call every Cartesian product of intervals 11 , ... , In in IR an in­

terval I in IR
n

. Then the interval is said to be degenerate, iff at least 

one of the intervals 11 , ... , In is. 
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7.2. Distributions on an interval 1 in IRn 

Let I be any interval in IR n, hence the Cartesian product of n in­

tervals Il ' . . .  , In in IR , and consider the space C(I) (in short C) of all 

complex valued functions f(x) = f(xl " " ,  xn ) ,  which are defined and 

continuous on I. As in the case of one single variable, C(I) is a com­

plex vector space (and even a complex commutative algebra) , rela­

tively to the usual algebraic operations . For each k =  1 ,  . . .  , n we shall 
denote by Dk the partial derivation operator with respect to xk ' that is 

Dk =� ' Then, for each system r = (rl " ' " rn ) of n integers rk � O , we dXk 
put: 

and denote by Cr (I) the set of all functions f such that Dk f (for k s r) 

exists and is continuous on I in the ordinary sense, independently of 

the order in which the differentiation are performed. 

On the other hand, considering for each k a fixed point c k in Ik , 

arbitrarily chosen, we shall put 

The integration operator ,3k defined in this way, is obviously a 
linear mapping of the space C into itself, More generally, for every 
system r = (r i ' . .  " rn ) of n integers , rk � O, we shall denote by ,3r 
the operator ,3(1 . .  , ,3;11 , Obviously, ,3k is a right inverse of Dk , i .e . , 
Dk,3k f = f, for any f E C. More generally, for every system r = (rl , ' , " rn ) 

of non-negative integers , we have Dr,3rf=f, VfEC. 
As each Dk is not defined on the whole space C (as a mapping 

of C into C) ,  there arises the problem of enlarging the set C, in 
or-der that the operators Dl ' ' ' ' ' Dn may be extended as mappings of 
the enlarged set into itself according to some natural conditions,  
which we are going to state precisely in the form of axioms . The new 
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set will be denoted by !W(/) and its elements will be called dis­
tributions on I. The set !W(/), provided with the n basic operators 

DJ , . . . , Dn ,  is just defined, up to an isomorphism, by the following 

system of axioms: 

AXIOM 1. If fEe(/), then fE!W(/) . 

AXIOM 2. To each f E!W(/) and each k = 1 ,  . . . , n there corresponds 
an element Dkf of !W(/) (the derivative of f with respect to xk ) ,  in 
such a way that: (i) if f is a function having a derivative f:k , with 
respect to xk ' in ordinary sense and continuous on I, then Dkf coin­
cides with f:k ; (ii) the operators D1 , • • •  , Dk are mutually inter­
changeable, that is: Dj Dk f = Dk � f, for all j, k = l , . . .  , n, and all 
fEPfl(/) .  

DEFINITION. If r i s  any system (rl ' . . .  ' rn ) of  n non-negative in­

tegers , then Dr = D(1 . . . D:n . 

AXIOM 3. For every f E§(/) there exists a system r of n integers 
� O  and afunction F E C(/) such that f= DrF. 

AXIOM 4. If r is a system of n integers rk � 0 and F, G E C (I), 
then we have DrF = DrG if and only if F- G is of the form 
F - G = e1 + . . . + en ' where ek is a polynomial in Xk of degree < rk 
whose coefficients are continuous functions on I independent of Xk 
(for k = l ,  . . .  , n). 

More explicity, each ek considered in this axiom is of the form: 

where the coefficients a kv are continuous functions on I independent 
of xk . We shall denote by �k rk the set of all functions 8k of this form 
(for k = 1 ,  . . . , n) and by �r the set of all functions 8 of the form 
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e= e[ + . . . + en with ekE CJPkrk (which we call pseudo-polynomials 

of degree < r ) . Thus 

In turn, the set of all systems r of n integers � 0 will be denoted 

by 1Non. 
As for the case of one single variable, it can be proved, in a sim­

ilar way, that this axiomatic system is both consistent and categori­

cal .  The only essential difference arises in the proof of consistency, 

about the definition of the equivalent relation. We are going to see 

precisely what this difference consists of. 

Axiom 3 says that every distribution on / is determined by a 
couple (r, F )  where r E 1Non and F E C(/) .  On the other hand, axiom 

4 leads to define a relation --- in the set of all such couples in the 

following way : (r, F )  --- (s , G )  iff there exists a system m of integers 

such that m � r, s and 

7.2.1. 

The difficulty arises just when it is necessary to prove that, if 

there exists at least one m > r , S satisfying 7 .2 . 1 . , then every other 

system h such that h � r, s satisfies the corresponding condition. Now 

this can be proved with the aid of two lemmas : 

LEMMA 2. If e E CJPr and, in addition, e E C P then Dp e E CJPr_p for 
p < r . 

In fact, suppose that these two lemmas are true and denote by IL 
the least system of integers such that IL > r, s ,  that is ,  IL = (J1 I ' . . . , J1n ) 
with J1i = sup (rp sJ, i = l ,  . . .  , n .  Then, if m is any system � r, s ,  

satisfying 7 .2 . 1 . , we obtain, by applying D m - p.  to both members of 

7 .2 . 1 .  and taking lemma 2 into account: 
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The remaining part of the proof is analogous to the one given 

for the case n = 1 .  So, it is easily proved that the relation ---- just de­

fined is an equivalence relation, and the class of all couples equiva­

lent to (r, F )  is denoted by [r, F ]  etc . It is, however, convenient to 

observe that the derivation operators can now be defined in general 

by putting: 

Dp [r, F ]  = [r +p ,  F ]  

for every system p EINon ; in particular, D, =D( I · o . . . . .  O), • • •  , D
n
=D(o. o  . . . . .  I ) . 

The preceding definition shows immediately that these operators are 

interchangeable. 

PROOF OF LEMMA 1 .  It is almost immediate . It will be suf­

ficient to remember that ,Jp equals the product ,Jp (  . . .  ,JPn regardless 

of the order, and that, if Bk is a polynomial of degree < rk in xk ' whose 

coefficients are continuous functions on I independent of x k ' then 

Jjek is again a polynomial in xk ' with coefficients of the same type 

and of degree < rk + 1 or < rk , according to j = k or j ;z! k . • 

PROOF OF LEMMA 2. It can be reduced to the following 

proposition : if B E  ClPr and, in addition, BE CP, then B can be repre­

sented in the form e= w,  + . .
. + wn ' where wkE ClPkrk '  and, in addition, 

wk E CP . 
In fact, this implies that DP wkE ClPk. rk -Pk ' hence Dp B E ClPr_p ' by an 

argument similar to the one used for lemma 1 .  

To prove the preceding proposition,  remember that I i s  the 

Cartesian product of n intervals Ii ' . . .  ' In in IR . Let Ck l , • • •  
, Ckrk be rk 

points chosen arbitrary in Ik for k = 1 ,  . . . , n .  Then, to each function 

f E C and each k = 1 ,  . . . , n, corresponds one, and only one, function 
fkE ClPkrk '  such that: 
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To see this it is sufficient to apply the Lagrange interpolation 

formula: 

7.2.3. 

where 

7.2.4. 

and 

Thus lPv (ck,u ) = 0 for v #-J.l , which along with 7 .2 .3 . and 7 .2.4. implies 

7 .2 .2 .  

Let us denote by lik the mapping f --:. fk defined in this way for 

k =  1 ,  . . . , n .  It is readily seen that lik is a projection of C onto �krk ' 
that is a linear mapping of C onto <!Pkrk '  such that likf = f, for every 

f E <!Pkrk ·  
Suppose now that EJ is a function E <!Pr having a continuous 

derivative DPEJ on I in ordinary sense (p s r) .  Then EJ is of the form 

n 
e = .? e, with e. E Qi'", . Put W I = XI e;  since XI el = e" we have 

EJ - w  = ( I - li ) e + · · · + ( I - li ) (9 1 I 2 I n 

( l - li1 ) EJk E <!Pkrk for k =  2, . . . , n .  Put in general 
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Then it i s  easily seen by repeated application of the same argument 

n 
that e = � w, with w, E '1/'" " Finally, observe that w, is a polynomial 

in x k '  which is obtained by repeated application of Lagrange' s 

formula 7 .2.3 . ;  therefore, its coefficients are linear combinations 

of functions, which derive from e(x) by replacing one or more 

variables XI " ' "  xn by constants . Since DP8 exists in ordinary sense 

and is continuous on J, it follows that the same property holds for 

DPwk (k = 1 ,  . . . , n) . •  

7.3. Vector operations and other fundamental concepts 

Let f and g be any two distributions on an interval J in /R n, 
f=Dr  F and g =DsG, where r, s E/Non and F, G E C (J ) .  As in the case 
of one variable, we shall put, by definition: 

where m is any system of n integers such that m � r, s .  On the other 

hand, we shall put, by definition : 

It is easily seen, as in the case of one variable, that the set §(J) 

of all distributions on J becomes a complex vector space with the 

preceding two definitions. Moreover, it is obvious that the derivation 
operators Dp are linear mappings of this space into itself. 

Translation operators can also be defined as in the case of one 
variable . If f = DPF, with F E C(J ) , and h E /Rn, then shf =DP(ShF ), 
where 
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For every r E 1Non , we shall denote by Cr (/ ) - in short Cr - the set 

of all distributions i on / of the form i=Dr F, with F E C(/ ) .  

7.4. Restriction operators. Global distributions 

The restriction operators , for distributions on intervals in IR n, 
may be defined and denoted exactly as in the case of one variable 

and they have similar properties . In particular, if / is any interval in 

IRn, we can identify every distribution i on / with its restriction to the o 
interior of /, so that §"(/ ) C §J(/ ) . 

Besides ,  the collecting . principle can be extended to distribu­

tions on intervals in IR n by an argument similar to the one used in 

the case of one variable, but it is a little more complicated ; now 

the projections llk considered in 7 . 2 . should be used for each 

variable xk separately in order to "collect" to each other the given 

distributions . 

7.4.1 .  DEFINITION. If Q is a (non-empty) open set in IR n, a global 

distribution on Q is any system i = ( i/ ) that may be defined by 

assigning to each compact interval / C Q one distribution i/ on /, in 

such a way that, if J is a compact subin-terval of /, then iJ = A i/ . 

We shall denote by !if (Q) the set of all global distributions on Q 

and, as in the case of one variable, we shall put by definition: 

(i/ ) + ( g/ ) = ( f/ + g/ ) , A (f/ ) = (Afl ) , Dr(fl )  = (Drf/ ) · 

Then §J (Q) becomes a complex vector space and Dr  a linear map­

ping of §J (Q) into itself. In particular, every function f E C (Q) may 

be identified with the global distribution ( fl ) , where fl is the restric­

tion of f to each compact interval / C Q ,  so that C (Q) C §J (Q) .  
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7.4.2. DEFINITION. A global distribution f on Q is said to be of 

finite rank, if and only if there exists r E /Non and f E C (Q) such that 

f = D r  F; otherwise, f is said to be of infinite rank. 

In particular, if Q is an interval , it is easily seen, by the collecting 

principle, that every distribution f on Q can be identified with a 

global distribution of finite rank on Q. So, in the general case, the 

global distributions of finite rank on Q will be called distributions 

on Q, and the set of all these objects will be denoted by §J(Q) . This 

set, which is obviously a vector subspace of §J (Q), could also be 

defined directly by a system of axioms, as in the case of intervals .  (It 

should be observed that, contrary to the case of IR , the components 
of an open set Q in IR n are not, in general, intervals. ) 

In the preceding definitions,  we could consider, more generally, 

as the domain of a distribution, any set .4 such that 

Q C .4 C Q  

where Q is any (non-empty) open set in IR n. But as in the case of 

intervals,  it is easily seen that every distribution on .4 can be iden­

tified with a distribution on Q, so that §J(.4) C i?lf(Q) . 

If f, g E �(.Q) and (9 is an open set contained in Q, we write f = g 
on (9, if and only if the restrictions of f and g to each interval I C (9 
coincide. We say that f is null on (9, if and only if f equals the null 

function on (9. From the collecting principle follows that the union of 
all open sets where a global distribution f is null is again a set where 
f is null. That being so:  

7.4.4. DEFINITION. If f is a global distribution on an open set Q 

in IR n and if Qo is the greatest open set where f is null, then the set 

Q\ Qo is called the carrier of f. 
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7.5. Locally summable functions as distributions 

A function f is said to be locally summable on an open set Q 

in IRn if and only if f is summable on each compact interval IC Q.  

The integral of f over I may be denoted by i f. If the extremities of 

I are a = (ap . . . , an ) and b = (bp . . .  , bn ) with a s b ,  then we may also 
denote the integral by the notation 

ff (X)dx 

or more explicity, 

If the condition a s  b is not satisfied, we shall put, by definition 

where a = inf(a, b) and p = sup (a, b) .  

7.5.1 .  DEFINITION. If f is a locally summable function on an in­
terval I in IR n , any function F such that 

where c is an arbitrary fixed point of I, is said to be an integral func· · 

tion of f on I. 
It can be proved that, if F is an integral function of f on I, then 

a a 
F E C(/) and f(x) = - . . . - F(x) almost everywhere in ordinary aX1 aXn 
sense. Moreover, if F] and F2 are two integralfunctions of j, then 
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n 
F, - F2 is a function fa of the form fa =.? fa. , where fa. is a continu-

ous function on I independent of xk ' for k = 1 ,  . . . , n . 
As in the case of one variable, two locally summable functions f 

and g on I have the same integral function, if and only if f (x) = g (x) 
almost everywhere on 1. In this case, f and g are said to be equiva­

lent on I, and the vector space of the corresponding equivalent 

classes [ f ]  is defined as in the case of one variable. 

Besides we shall denote by r (standardized f) the function de­

fined by the formula: 

only at the points x for which the written derivatives exist in ordi­
nary sense, independently of the order, and leading to the same value. 

From now on, when we speak of locally summable functions, it 

will be in general understood that they are standard functions, and 

we shall replace any equivalence class [ f] by the corresponding stan­

dard function r. The vector space of all locally summable functions o 
on I will be denoted by L (/) . That being so, it is easily proved, as in 
the case of one variable, that 

7.5.4. By assigning to each locally summable function f on I the dis­
tribution f* = DJ . . .  DnF, where F is any integral function of f, there 

o 
is defined a one-to-one linear mapping of L (/) into �(I), such that: 

(i) if fEe(I), then f = f * ; 

(ii) if f is absolutely continuous with respect to xk on Ik , for almost 
every system of values of the remaining variables, then, to the 
derivative f:k infunctional sense, corresponds the derivative Dkf*  in 
distributional sense. 

o 
That being so, it is natural to iden�ify each function f E L (I) with 

the corresponding distribution f * E �(/). 
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An important example of a (non-standard) locally summable 
function is the Heaviside function on IR n (which we shall denote by 
H [n) ) defined as follows : 

{ I if xk > 0 for all k = 1 ,  . . .  , n 
H [n] (x) = o if xk < 0 for some k = 1 ,  . . . , n "  

� 

The standardized H eaviside function H [n) is equal to H [ n] at any 
continuity point of H [n) and is not defined at any discontinuity point 

� 

of H [n) . For example, if n = 2, H [n] is not defined only on the semi-
axis x2 = 0, X I � 0 and x I = 0, x2 � O. 

0 1 
- - - - - - - - - -

X l  
0 0 

We shall put in general D = D 1 • • • D n " 
The Dirac distribution on IR n, which is denoted by c5'[n) , can be 

defined as the pure mixed derivative of H [n] , that is, c5'[n] = DH [n) . 
In general, given a locally summable function f, even if f is not 

a standard function, we may denote also by D'f, where r is any 
......., 

system of integers, the distribution D'j . For example, we may write 

c5'[n) = D H [n) . 

Remarks about notation: 

I) We shall often denote simply by H the Heaviside function on 
IR n, whenever no mistake seems possible. In particular, no misun-
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derstanding may arise, if the independent variables are written ; for 
example, the meaning of expressions such as H(xI ' . . .  ' xn ) ,  H(x3 ) ,  
etc . , becomes quite clear. I t  should also be observed that, in prac­
tice, variables appear generally without subscripts , but this gives 

no trouble ; for example, there will be no doubt about the meaning 

of expressions such as H(x, y) , H(t ) ,  etc . , or formulas such as 
H(x, t) = H(x)H(t) ,  ft (X' t) = f(x, t)H(t) ,  etc . ,  when x, y, t are real 

variables and f a function on IR 2 . 
Observe that the Dirac distribution at a point a of IR n is to be 

defined as in the case n = 1 : 

11) It must be observed that the preceding conventions about 
dummy variables cannot be extended, without some modifications, to 
distributions on IRn, Now, we shall adopt the following conventions : 

a) If f is a distribution on a subset of IR n and x, y ,  . . . are vari­
ables on IR n, then f(x) = f(y) = . . .  = f. 

b) If f is a distribution of one single variable, then f(xl ) , · · · ,  f(xn ) 
denote distinct distributions on subsets of IR n. 

For example, the symbols Xl ' . . . , xn denote n distinct functions on 
IR n - the coordinate functions . In turn, H(xl ) ,  • • •  , H(xn ) denote n 
distinct locally summable functions on IRn, whose product is H[n] , 
and so forth. 

7.6. Measures as distributions 

Let .Q be an open set in IR n. The concept of a measure J1 on .Q 
can be defined exactly as we did for the case n = 1 .  For the sake of 
simplicity we shall restrict us here to the case where .Q is an open 
interval 1. 

7.6.1.  DEFINITION. Let J1 be a measure on I and c = (C l ' . . . ' Cn ) a 
point of 1. If we put: 
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(k = 1 , 2, . . .  , n) 

then the function F defined by 

F(x) = sgn IT (xk- ck ) · f.1 (Jl x J2 x . . . x Jn ) for all x E I  is called the 
k 

integral function of f.1 from c .  

In order to see how to derive f.1 from F, it is convenient to con­

sider, for every system r = (ri ' . . .  , rn ) of integers rk � 0 and every vec­

tor h = (h l ' . . . , hn ) E IR n , the operator 

7.6.2. 

where ..4ihi is the difference operator defined by 

For example, for n = 2 

..4h f(x) = ..4 1 h ]..42h2 f (X l ' x2) 

= ..4 1 hJf(x I , x2+ h2 ) -f(x 1 , x2) ] 

= f(x I + h I ' X2+ h2 ) -f(x 1 + h I ' X2) -f(x 1 , X2 + h2 ) + f(x 1 , X2) · 

Now, it is easily seen that if F is an integral function of the mea­
sure f.1 on I (in IR n), then, for every pair of points a, b of I, such that 
a < b, we have: 

7.6.3. ,u] a, b] = ..4h F(a) , with h = b - a .  

Moreover, 
f.1 [ a, b] = Um f.1 ] x , b] 

X """ a 
f.1] a, b [  = Um f.1]  a,  x] 

x ...... b-
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and analogously for the other types of bounded intervals J, such that 
je l (in particular for degenerate intervals). 

Thus the measure J.1 can be determined entirely from its integral 
function F. 

It can also be seen that F is continuous on the right at every point 
a of L i. e. , F(a) = F(a+ ) . 

7.6.4. DEFINITION. By a primitive of a measure J.1 on I we shall 

understand any function F on I, continuous on the right, satisfying 

7.6. 3 .  

Obviously, every integral function of  J.1 i s  a primitive of J.1, but 
not conversely. 

Let us put, for every interval J= l a, b] with a, b E l  (a < b) : 

iiF(J ) = iih F(a) with h = b -a .  

Then, a function F on I is said to be of bounded variation, if and 

only if to each interval J= ] a , b]  with a , b E l,  (a < b) ,  there corre­

sponds a number M(J ) , such that, for every partition of each inter­

val Jk = ] ak , bk ] in a finite number of left open intervals Jk i ' · · · ' JkP k 
(k = l , 2, . . . , n), we have 

P I  Pn � . . . � I iiF(JI V 1 X • • •  x Jnv) 1 s M(J ) . 
vI = l  vn = l  

That being so, it is easily seen that: 

7.6.5. A function F on I is a primitive of some measure J.1 on I, if and 
only if F is of bounded variation on I and continuous on the right at 
every point a of I. Moreover, two such functions Fl and F2 are primi­
tives of the same measure if and only if FI - F2 if of the form 
(91 + . .

. + en where ek is a function of bounded variation on I, inde­
pendent of Xk ' k =  1 ,  2, . . . , n .  
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In the set 0ll (/) of all measures on /, there is defined the structure 
of a complex vector space, as in the case n = 1 . On the other hand, o 
every function fE L (/) can be identified with the measure f.1f' defined 

by lip) = L f. 

Finally, observe that every function F of bounded variation on / is 
locally summable on / and uniquely determined by the correspond­
ing standard function. Thus, applying 7 .6 .5 .  and taking into account 
axiom 4 in 7 .2 . , we arrive at the following conclusion : 

7.6.6. By assigning to each measure f.1 on / the distribution f * = DF, 
where F is any primitive of f.1 ,  there is defined a one-to-one linear 
mapping of 0ll (/ ) into §(/ ) such that, if f.1 is a locally summable 
function on /, then f.1 = f *. 

That being so, it is natural to put in the general case f.1 = f* , so 
that 0ll (/ ) becomes a vector subspace of §(/) .  This result holds, if 
we consider instead of an open interval /, any open (non-empty) set 
Q in IR n . 

7.7. Concepts of multiplication; tensor products, concrete 

examples. 

Let / be any interval in IR n . The product of a continuous function 
f on / with a measure f.1 on / can be defined as in the case of one 
variable. For example, we have, for every continuous function on IR n 

and every point a of IR n : 

f(x)8(x-a) = f(a)8(x-a) . 

If r is a system of n integers rk � 0, 0llr (/) - or simply 0llr - de­
notes the set of all distributions f = Dr F, where FE 0ll (/) .  Obviously, 
�r is a vector subspace of § and C r a sub algebra of c. 
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Now we can define the product fg of a function f E cr and a 

distribution g E mL
r

, so as to satisfy the two conditions : 

i) If g E mL, then fg is the product of the function f by the mea­

sure g in previous sense. 

ii) If Dk f E  Cr and g E 011r , then 

Then if f E c r  and g =DrG with G E 011 , the product fg is uniquely 

defined by the following formula (cf. chapter IV, 4. 1 . 1 . ) :  

where I l r -k l l = (r1 - k1 ) + . . . + (rn- kn ) · 

For example, for f E cr(IRn ) and a E IRn : 

As in the case of one variable, it is easily proved that 0llr becomes 
a module on the algebra Cr. 

Besides, we have several different possibilities of extending this 

concept of product, as in the case of one variable, and even new pos­

sibilities . For example : 

Let p be, not a system of integers, but an integer � O. Then we 

shall denote by CP(/) or simply CP the set of all functions f having 

continuous derivatives f (k) on /, in ordinary sense, of all orders 
sp, that is ,  such that I I k l l = l k1 1 + . . . + I kn l sp. On the other hand, we 

shall denote by 0R//) or simply by 0llp the set of all distributions g 
m 

on /, which can be expressed as sums � gv of a finite (arbitrary) 

number of distributions gv ' belonging to mLr with r =  (r1 , • •  · , rn ) and 
I r1 1 + . . .  + I rn l sp. 
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Now, if we require the distributive law to be maintained, it can 
be shown that, if fECP and gE01tp ' the product fg is uniquely de­
fined by: 

m 

fg= ::? fg, 

where fgv' is given by the previous general formula. Thus 0ltp be­
comes a module on the algebra Cp. 

Observe that, in particular, the space � of all distributions is a 
module over Coo, the space of infinitely differentiable functions (on J). 

Another new possibility arises from the concept of "tensor 
product". Let J and J be two intervals respectively in IRm and IRn 

spaces (m, n > 0). If f and g are two continuous functions on J and J 

respectively, then the expression f(x)g(y) = f(x l , ···, Xm)g(Yl'···' Yn) 
defines obviously a continuous function on the interval J x JCIRm+n. 

Let now f and g be two distributions on J and J respectively, 
f =DrF and g=DsG, with F EC(J), GEC(J). Then it is readily seen 
that the expression 

7.7.1. DrEBs [F(x) G(y)] 

denotes a distribution on J x J, uniquely determined by f and g. That 
being so 

7.7.2. DEFINITION. The distribution 7.7.1. will be called the 
tensor product (or direct product) of f by g and denoted by f®g 

or by f(x)g(y). 

It is readily seen that this tensor product is bilinear and associa­
tive, but, of course, not commutative. Furthermore, it can obviously 
be extended to any finite system, of distributions. 

For example: H[m]®H[n] =H[m+n], 8[m]® 8[n] = 8[m+n], 
8[3] = 8 ® 8 ® 8, etc. In a less rigorous, but more convenient notation, 
we may write also, for example (cf. 1.5.): 8(x, y, z) = 8(x)8(y)8(z), 

Dt8(x, t) = 8(x)8'(t), etc. 
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Many concrete situations lead to considering tensor products of 

distributions, as we have already seen in 1.5. For example, let f (x, y) 
be a locally summable functions on IR2, then f(x, y)8(z) will be a 
distribution whose carrier is contained in the x, y-plane. This may be 

the case of an electric charge distribution of suiface density f (x, y) 

on this plane. 
Analogously f(x, y)8'(t) may represent an electric doublet on 

the x, y-plane, and so forth. 
Similar situations may arise relating to curves, surfaces or, more 

generally, manifolds in IRn-spaces. 

7.S. Change of variables. Concrete examples; 8-distributions of 

a hypersurface 

Let a be a distribution on an open set Q in IR nand r a system of 

n integers rk > O. Then the symbol aDr will denote the operator defined 

by the formula 

for all distributions f on Q such that a is multipliable by Drf. In par­

ticular, if aECr:tJ(Q), the domain of aDr will be �(Q). 

By a linear differential operator of finite order we shall under­

stand any operator A which can be represented as the sum of a finite 

number of operators of the form aDr; then, the order of A is the 

greatest value of Ilr 11 occurring actually in all terms of the sum. 

That being so, let us consider any two integers rn, n > 1 and a 

mapping h of an open set Q* C IR n into an open set QC IR m. Then h 

is defined by a system of rn reai-valued functions h l' . . . , hm on Q*: 

which may be written x=h(t). 
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Let f be now a complex-valued function on Q and suppose 
fEC1(Q), hiECl(Q*) for i=l, ... , m. Then 

ah. 
or else, putting hi) = _I 

atj 

m 

7.8.1. Dt/fah)= � hjj(Dxifah), j=l, ... , n. 
l = 1 

a) Let us consider at first the case when m = n, and suppose that the 

Jacobean ofh with respect to t (i.e. the determinant Ihijl) is different 

from zero on Q*: 

(h .. . h ) 
J 1 n ;z! 0 for all t E Q* . 

t ... t 1 n 

Then 7.8.1. can be solved with respect to the functions Dx. fah: 
1 

n 

(Dx,f) oh=
}
� a,p./f oh), i=l, ... , n 

where ajjE Cl(O*) for i,j=l, . . . , nand [aij] is the inverse of the ma­

trix [hij]. This result may be expressed by writing : 

7.8.2. 

From now on the change of variables for distributions of n vari­
ables may be defined essentially as in the case n = 1. 

7.8.3. DEFINITION. If f=DrF, with FEC(Q) and r=(rl'0 . . ' rn) 

and if aijE cr(Q*) for all i, j then 
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f o h = D;(F o h) E Cr (Q*) 

with 

Uniqueness and other properties of the composition f 0 h may be 
proved as in the case of one variable. 

b) Consider now the case m < n and suppose that the characteristic 

of the matrix [ hijJ is equal to m for all t E Q* . Then, for every 

t OE Q* we could solve 7 . 8 . 1 .  with respect to (Dx f ) o h  in some neigh­

borhood of t o. But, in order to obtain a global solution (on Q), it is 
convenient to "normalize" the system 7 . 8 . 1 . , i .e . to consider the 
" normal" system deduced from the first: 

n m 
7.8.4. � hvj Dt/f o h) = � hVi (Dxi f o h) , v = l , . . . , m 

] = 1  1 = 1  

where 
n 

hVi = � hvj hij ' v = I , . . .  , m .  
] = 1 

Then the determinant I hVi I is different from zero for all t E Q* and 
the system 7 .8 .4. can be solved with respect to Dx o  f 0 h , for i = 1 ,  . . . , m I 

or in short 

n 
(DXi f )  o h =  � aij D,/ f  o h) 

] = 1 

n 
DXi = � aijDtj , i = l ,  . ' "  m , 

] = 1  

where the coefficients aij are C l  functions on Q* uniquely deter­
mined by the given functions hi ' 
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From now on the change of variables for distributions may be 
defined as in the previous case_ 

Suppose in particular m = l _  Let us consider the change of vari-
ables defined by a function u = h (xl , _ _ _  , xn ) mapping an open set Q* 
in IR n into Q in IR (now the new variables are XI ' _ _ _  , xn instead of 
t l ' _ _  - , tn ) - Assume h E C I (Q*) and 

Then, every function f(u) of the real variable u, such that fE C I (Q), 
is transformed into a function f(h (xI , _ _ _  , xn )) = (f o h)(x) such that 

7.8.5. Dx . (f o h) = h: . (f ' o h) ,  j = l ,  _ _ _  , n ,  J J 

where f ' = Duf- From this follows : 

hence putting 

we obtain 

that is 

7.8.6. 

n n 
� h: .Dx . (f o h) = (f ' o h) � (h: . Y ; � J J � J J = l J = l 

h' 
a . = 

Xj J' 1 n , = , - - - , , J (h' )2 + _ _ _  + (h' )2 X l  Xn 

D = a D + - - - + a D _ u I X l n Xn 

Observe now that, for each u Eh(Q*) ,  the equation h (x) = u rep-
resents a hypersurface L'u in IR n + l ,  and that al , _ _ _  , an are the com-
ponents of the vector 
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which is normal to .Eu at each point x. So 7 .8 .6.  can be written simply 

7.8.7. 1 a 
D = --- ­

u I grad h i  an 

where a/an denotes normal derivation with respect to the hypersur­
face .Eu ' i .e .  the differentiation along the unitary vector n (more pre­

cisely, along the vector field n) .  

c)  Suppose finally m > n. Then h maps Q* onto a manifold V of di­
mension s n contained in Q and, given a distribution f on Q, the 

composition f 0 h exists, if and only if there exists the restriction fv 
of f to V, as well as fv 0 h ;  then f 0 h = fv 0 h .  We shall speak later about 
this new concept of restriction. 

Examples : Consider the distribution 8 on /R and a C l  mapping f of 
an open set Q* in /R n into /R such that I grad f l ;I! 0 on Q*. Then it is 
easily seen that 80 f exists and is given by 

1 a 
H'(f(x)) = 

I 
I - H(f(x)) 

grad f an 

where a/ an denotes the derivation along the vector field n= l grad f l -1 

grad f. Observe that H(f(x)) equals 0 or 1 according as f (x) < O or 
f (x) > 0;  so, denoting by .E the hypersurface f (x) = 0, we could say 
that H(f(x)) equals 0 on the left of .E and 1 on the right of .E (.E is 
supposed to be oriented by means of the normal n) . On the other 

n 
hand, since � u;y .. 0 on Q*, there exists , for every xOEI, a 

bounded open interval I in /R n, containing xOE.E, such that the equa­
tion f (x) = 0 can be solved in I with respect to one of the variables 
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and 

Now we have (supposing, as we can, f� l> 0 on ] )  

n a I grad f l - - D -- -
an f ' X l  

X l  
1 + k (rp�y Dx , • 

-

Let l= [a l , b I ] x . . .  x [an ' bJ be an interval such that l e ]  and put 

LX2 Lx" tj/(x) = . . .  
a2 a" 

n 
1 + k [ rp�. <';' , . . .  , S'n>F H(j(xl ' S'2 ' . . .  , S'n ))dS', . . .  dS'n · 

It is readily seen that, in the neighborhood ] of xo, we have 

a -
- H(f(x)) = Dtj/(x) 
an 

-

where D = DxI Dx2 • • •  DXn. Applying this argument to each xoEI, it fol-
lows that 

a 
7.8.8. - H(f(x)) is the measure on Q* assigning to each bounded 

an 
-

interval l, such that l e Q*, the Harea " of I n  l. 

We shall denote by 8� this measure (8-distribution of the orient­
ed hypersurface I) and by HI the function H(f(x)) (Heavisidefunc­
tion of I).  Hence we have 

7.8.9. 

It can also be shown that, if f E e  2, then 

5:' ( a )2 . 
AH�= u� = an HI (where A = dlV grad) . 
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These considerations, except the preceding result, can be extend­

ed to the case where I is any oriented piecewise smooth manifold 

in IR n. It should be observed that, by considerations of such type, all 
the classical vector and tensor analysis can be rebuilt for distribu­
tions with proofs which are in general more natural and more simple 
than the classical ones. 

As an example of the 8-distributions of a hypersurface, consider 

the distribution 8( lx l -p), wherexEIR3, Ixl = YXi +xi +x� and p>O. 

It is easily seen that this distribution is the 8 of the sphere I xl = p. A 

concrete example may be a distribution of electric charge with sur­

face density 1/4n on the sphere, supposed to be a conductor in elec­

trostatic equilibrium. Then the charge distribution 8( l x l -p) creates 

x 
the electric field u defined by u = p2 

I x l3 Hc l x l - p) which derives 

from the electric potential 

v= 

1 1 
-- for Ix l sp 4n p 

1 1 

- -I I 
for Ixl>p· 4n x 

It is easily seen then that �V= -4n8(lxl-p). 

Consider now the distribution 8(X2_V2 t2), with xEIR3, t real � 0 

and v constant >0. We have now 

1 
O(X2-V2 t2) = 41xl [oClxl-vt) + oclxl + vt)], 

where 8(lxl-vt)=�H(lxl-vt) for each t�O. This distribution is 
an 

defined only for t �O and its carrier is just the wave cone x2- v2 t2= 0, 
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minus the origin. In turn, the carrier of 8(X2- v2 t2 + p), with p> O, is 
an hyperboloid of two leaves in the space IR; x IRt '  etc . 

7.9. Topological vector space of distributions of several variables 

Let I be a compact interval in IR n, p = (p, p, . . .  , p) E /N; , and 

consider the vector space C(/) provided with the usual norm 

I I f l l = max lf(x) l .  If we denote by Cp(/) the vector space of all dis­

tributions f of the form f = DPF = Df ' "  D: F, where FEC(/), it is 

natural to consider C/I) provided with the semi-norm corresponding 

to the ball DP U, where U = { f : fEC(/) , I l f l l = I } .  Now the kernel 

n 
of DP is the set Gp= �Gk. P of all pseudo-polynomials of degree 

« p, . . .  , p), and it can be proved as in the case of n= l , by means of 

Lagrange's interpolation formula, that Gp is closed in C(/) . Hence 

C/I) is a normed space. On the other hand: 

00 
lW(l) = U Cp(l) , 

p = o 

and it is easily shown, as in the case n = 1 ,  that the injection Cp ---+ Cp +1 
is compact for all p .  Hence lW(I) , considered as the inductive limit 
of the normed spaces C/I), is a (LN*) space. 

In particular, the convergence of sequences can be defined direc­

tly as follows :  

7.9.1 .  A sequence of distributions fkElW(/) converges to gElW(/) , if 
and only if there exists an integer p > 0, a sequence of functions 
FkE C(l), and a function GEC(I) such that: fk = DP� for all k, 

g = DpG and I I Fk- G 1 1 ---+ 0 . 
It is still readily seen that convergence in the mean on I implies 

convergence in distributional sense. 
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Let now D be an open set in IR n. The vector space § (D) is 

provided with the topology of the projective limit of the (LN*) 

spaces §(I) , where I is any compact interval in D, by means of the 

linear mappings PI. This means that a filter a converges to 0 in 

§f(D), if and only if PIO'converges to 0 in §(I) for every compact 

interval I CD. 

In any of these distributional spaces, the following property is 

obviously true: 

Examples: 1 - Put 

where <\=H; (cf. 6.8.1.). Then it can be seen, as in the case n=l, that 

lim Dr 8k[n] = Dr 8[n] Vr EIN;. k-+oo 

2-Considering primitives of the measures 5(x) and 5(lxl- �), for 

k = 1, 2, . . .  it is easily seen that 

Um 8(lxl-�) = 8(x). k-+oo k 

3 - Let Uk(x) be equal to � (resp. 
I
�

I
) for Ixls � (resp. Ixl> �) 

(k= 1, 2, ... , xEIR3). Then 

f [U/X) __ l ] dx�O 
JI Ixl 
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1 
for every bounded interval I, so that � � N in distributional sense.  

Hence 

and, therefore (cf. 2) : 

1 A - =-4no(x) on IR 3 . I x l  
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