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111.1 
THEORY OF DISTRIBUTIONS· 

* Este texto tern por base apontamentos coligidos por diversos alunos de Jose SebastHio e 

Silva na sequencia de urn curso que realizou em 1958 na Universidade de Maryland, e que 

posteriormente foram utilizados, e por ele revistos, na Faculdade de Ciencias de Lisboa. 



CHAPTER VI I I  

PARTIAL I NTEG RALS AN D 

M U LTI PLE I NTEG RALS. CO NVO LUTI O N .  

8.1. Partial limits for distributions of two variables. 

Let I and ] be two intervals in IR , and suppose that ] is un­

bounded on the right. Given two functions f(x, y) and g(x) respec­
tively on I x ]  and I, f(x, y) is said to converge uniformly on I to g(x) 
as y �  + 00, if and only if for every £> 0, there exists a 7] E ] (inde­

pendent of x) , such that: I f(x, y) - g (x) 1 < £ for all y >  7] and x EI. 

On the other hand, if a is any real, we write f(x, y) E o(ya ) 

uniformly on I as y � + 00, if and only if (iff) 
f(x, y) � 0 uniformly 

ya 

on I as y� + oo. Put for every f E C(I x ]) :  

where xo ' (respectively Yo ) is a fixed point, arbitrarily chosen in I 

(respectively ]) . The following lemma is easily proved (cf. 6. 1 . 3 . ) :  

8. 1 . 1 . LEMMA. If a > - l and f(x, y) E o(ya) uniformly on I as 
y� + oo, then 
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�xf E o(ya) and �y f E o(ya+ l ) 

uniformly on I as y � + 00 . 

This lemma leads to the following: 

8.1 .2. DEFINITION. If f E !0'(I x J) and a > - I ,  we write 

f(x, y) E o(ya) on I as y �  + 00, iff there exist m, n E1No and 

F E  C(I x J) such that: 

( I ) f(x, y) = DxmD;F(x, y) ; 

(2) F(x, y) E o(ya+ n ) uniformly on each compact interval I* C I  
as y �  + 00.(7 ) 

Applying this definition and the lemma, the following properties 

are easily shown: 

8.1 .3. If f(x, y) E o(ya) and g(x, y) E o(ya) on I as y �  + 00, then, for 
all A ,  !l E e :  

8.1.4. If f(x, y) E o(ya) on I as y �  + 00, then Dx f(x, y) E o(ya) on I 
as y � + oo. 

8.1.5. If f(x, y) E o(ya) on I as y �  + 00 and (jJ(x) is multipliable by 
f(x, y) , then (jJ(x)f(x, y) E o (ya) on I as y �  + 00. 

Consider now g E !0'(I ) and fE !0'(I x J) ;  then: 

8.1.6. DEFINITION. We say that f(x, y) converges on I to g (x) as 

y �  + 00, if and only if f(x, y)-g (x) E o( l ) on I as y �  + 00. The 

distribution f (x, y) is said to be convergent on I as y � + 00, iff there 

exists a distribution g on I satisfying the preceding condition. 

(7) A more general condition could be required instead of (2) , but this definition is 
quite sufficient for applications. 
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The uniqueness property as well as the linearity property of 

convergence are in this case immediate consequences of 8 . 1 . 3 .  Then 

we can write: 

g (x) = lim f(x, y) or g (x) = f(x, + 00) on I, 
Y � + OO  

to express that f (x, y) � g (x) on I as y �  + 00 . 

On the other hand, the following important property, which 

does not hold in classical analysis, is an immediate consequence of 

8 . 1 .4 . : 

S.1 .7. DIFFERENTIATION PROPERTY. Iff(x, y) � g (x) on I as 

y �  + 00, then Dx f(x, y) � Dx g (x) on I as y �  + 00 ,  that is : 

Dx Um f(x, y) = lim Dx f(x, y) on I. 
Y -' + OO Y � + OO 

It turn, from 8 . 1 .5 . ,  follows 

S.1.7' . MULTIPLICATION PROPERTY. lff(x, y) � g (x) on I as 

y � + 00 and cp(x) is multipliable by f(x, y), then : 

Um [ tp (x)f(x, y)] = cp(x) lim f(x, y) on I. 

Moreover, applying 8 . 1 .7 .  and the linearity property, it is easily 

shown: 

S .1 .S .  SUBSTITUTION PROPERTY. If f (x, y) � g (x) on I as 

y� + 00 , and if h is a mapping of an interval 1* into I, such that 

f(h (t) , y) exists (cf. 6 .8 . ) ,  then g (h (t)) exists too and f(h (t) , y) � 

� g(h(t)) on 1* as y �  + 00 .  

This substitution rule concerns the parameter x .  Substitution 

rules concerning the converging variable y can be easily found as 

generalization of the criteria given in 6 .6 .  
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The "0 " symbol i s  extended to distributions f(x, y) on I x I, with 
respect to y, in the following way: 

8.1 .9. DEFINITION. If a> - I ,  we write f(x, y) E O(y«) on I as 
y �  + 00 ,  if there exist rn, n E1No and F E  C(I x l) such that: 

(i) f(x, y) = DxmDynF(x, y) ; 

(ii) for every compact interval I* C /, there exists a number M 
such that 

F(x, y) 
M 1* I (8) ---- s on x .  

( 1 + I y l )« +n 

More generally, if (fJ E C OO(I) ,  we write f(x, y) E O((fJ (Y» on I 
as y� + 00 ,  if and only if there exists a real Yo and a distribution 
fo (x, y)E 0 ( 1 )  on I as y �  + 00 such that f(x, y)= (fJ ( y)fo (X' y) , for 
y >Yo and x E I.  

Besides the linearity property, it is easily shown: 

8. 1 . 10 .  DIFFERENTIATION PROPERTY. If a is any real 
and f(x, y) E O(y«) on I as y � + oo, then Dx f(x, y) E O(yIX) and 

Dyf(x, y) E O(y«-l ) on I as y � + oo. 

Obviously all preceding considerations extend to the case when 
I is an interval unbounded on the left, and y � - 00 . 

8.2. Partial integrals for distributions of two variables. 

Let I and I be any two intervals in IR , f (x, y) a distribution 
on I x I. A distribution (fJ(x, y) such that Dy (fJ(x, y) = f(x, y) will be 
called a (partial) primitive of f(x, y) with respect to y. On the other 
hand, a distribution u (x, y) on I x I is said to be independent of y, if 

(8) The choice of ( 1  + I y I ) a + n  instead of ya + n  is only to make the quotient continuous on 
I* x J. 
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and only if it reduces to a distribution g of the variable x only, i .e . ,  iff 
it is of the form u (x, y) = �mG (x) with m E /No ' G E C(I) . 

8.2.1 . LEMMA. A distribution u on I x J is independent of y, iff 
D u=O. y 

PROOF. It is readily seen that, if u is independent of y ,  then 
Dy u=O. Suppose now conversely that Dy u=O  and assume u=�mD;U 
with m, n E /No and UE C(I) .  Then Dy u=�mD;+l U= O and therefore 
(cf. 7 .2 .  axiom 4) U must be of the form 

m - I  n 
U(X, y) = �x'a. < y) + � yjb/x) , with a, E C(J) and bjE C(l) , 

Hence u (x, y) = �mD;U(x, y) = n!�mbn(x) . •  

That being so, it is easily proved, as in the case of one variable : 

8.2.2. THEOREM. Every distribution f on I x J has infinitely many 
primitives with respect to y and two such primitives differ by a dis­
tribution independent of y. 

We are now able to define, in a natural way, the concept of par­

tial (or parametric) integral of a distribution f(x, y) . It will be suf­
ficient to consider integrals on /R . Let I be any interval in /R and 
jEf¥(I x /R ) ;  then : 

8.2.3. DEFINITION. The integral f f(x, y)dy is said to be conver­JIR 
gent on I, if and only if there exists a primitive ({J of f with respect 
to y wich is convergent on I as y � + 00 and as y � - 00 . Then, we 

write f f(x, y)dy = qJ(x, + oo) - qJ(x, - 00) on I. JIR 
From 8 .2 .2 . , follows at once the uniqueness of the partial inte­

gral . From the properties of partial limits we can deduce the linearity 
property for partial integrals, as well as the following properties : 
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8.2.4. DIFFERENTIATION PROPERTY. If r f(x, y) dy is con­JIR 
vergent on I, so is r Ix' (x, y) dy and JIR 

Dx 
r f(x, y) dy = r Dx f(x, y) dy on 1. JIR JIR 

8.2.5. SUBSTITUTION PROPERTY. If r f(x, y) dy = g(x) on I JIR 
and if h is any continuous mapping of an interval 1* into I such that 
f(h (t), y) exists, then 

r f(h (t) , y) dy = g(h (t» on 1*. JIR 
As for substitutions concerning the integration variable y, the 

criteria established in 6.6.  can be easily extended to partial integrals .  
In particular, we have, for all h E IR :  

8.2.6. 

8.2.7. 

r f(x, y + h) dy = r f(x, y) dy. JIR JIR 
r f(x, hY) dY = _

1

1

1 
r f(x, y) dy. JIR h JIR 

Criterium 6.3 .6 .  can also be extended to partial integrals :  

8.2.8. THEOREM. If for any compact interval 1*  C I, there exists 
a compact interval K such that f(x, y) = O  on I* x (lR- K), then the 

integral r f(x, y) dy is convergent on 1 .  JIR 
PROOF. Suppose f =�mD;F, with F E C(I x IR ) . The hypothe­

sis implies that, in a set {x E I* , y < -Yo } , F(x, y) reduces to a pseudo 
polynomial P of degree < (m, n), which we can assume to be zero, 
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otherwise we could subtract P from F (remember that P i s  uniquely 

defined by the value of F (x, y) for m values of x in 1* and n values 

of y in IR ) .  Then there exists a primitive of f with respect to y, 

say qJ, which is zero for x E I* ,  Y < - Yo and reduces to a function 

If/ independent of y for x E I* ,  Y > Yo ' Now, it is easily seen that 

qJ � 'If on I as y � + 00 and qJ � 0 on I as y � - 00 , so that 

f f(x, ; y) dy =  If/(x) . •  JIR 
Finally, the following extensions of 6 .5 . 1 .  and 6.5 .2 .  are easily 

proved: 

8.2.9. THEOREM. if f f(x, y) dy is convergent on I, then f E O(y-l ) JIR 
on I as y � 00. On the other hand, if there exists a < - 1  such that 

f EO( y« )  on I as y �  00, then f f(x, y) dy is convergent on l. JIR 
Remarks. 1 - If f (x, y) is a function, then for the convergence of 

f f(x, y) dy on I in distributional sense, it is not sufficient (nor nec­JIR 
essary) that the integral be convergent for each x E I. Obviously, 

a sufficient condition is that the integral be uniformly convergent 

on each compact subinterval contained in I. More generally, it can 

be proved that, if f is summable on each set 1* x IR , where 1* is a 

compact interval contained in I, then f f (x, y) dy is convergent on I JIR 
in distributional sense. 

2 - The differentiation property can be associated with the line­

arity property in a more general property. Let p (D) be a derivation 
n 

polynomial, that is  an operator of the form p (D) = � akDk, with 

a i ' . . .  , an E C. Then we have 
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p (Dx )
i 

f(x, Y) dy =
i 

p (Dx ) f(x, y) dy on I, 
IR IR 

whenever the first integral is convergent on I. 

Example. The preceding remarks offer a simple justification of for­

mula in 6 .3 .5 .  - 2.  Observe that: 

8.2.10. 
i e ixy 

-- dy = n-e- 1 x l for each x E/R .  
IR 1 +y2 

This can be easily found by the method of residues. Besides, as x, y 
are real variables , we have l e iXy l  = 1 and 

e ixy 1 
-- - for all x, y E/R .  
1 +y2 1 2 +y  

Thus the integral 8 .2 . 1 0. is dominated, for all x E/R ,  by the integral 

i ( 1  +y2)-ldy, which is obviously convergent. Hence, according to 
IR 

the Weierstrass test, the first integral is uniformly convergent on /R 
and therefore convergent on /R in distributional sense . Consequently, 

On the other hand, 

so that 

( 1 -D; )e- 1 x l = 2o(x) . 



Hence, from . 8 .2 . 1 0. follows :  

8.2.1 1. L e ixydy = 2 1C8(x) on IR . 
IR 

8.3. Multiple integrals (on IRn ). 
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Let f be a distribution on IR n and A any complex number. We say 
that f (x) converges to A as x � + 00 n if and only if there exist r EIN; 
and F EC(lRn)  such that f = Dr F and 

F(x) A 

Then, we write ..1= lim f(x) or ..1= f( + oon ) . 
x--+ + oo n 

The uniqueness of the limit, as well as the linearity property can 
be proved by an argument similar to the one used in the case n = 1 .  
The concept of convergence as x � - 00 is analogously defined. 

On the other hand, every distribution qJ such that D qJ = f (where 
D = Dl . . .  Dn ) will be called a pure mixed primitive of f. It is easily 
seen that: 

8.3.1. THEOREM. Every f E !?lJ(IR n) has infinitely many pure mixed 

primitives and two such primitives differ necessarily by a distribution 

n 
of the form � u j where U j is a distribution independent of Xj (that is, 

of the form Dru where u is a continuous function on IR n independent 
of x). 

That being so, we shall write by definition. 

8.3.2. 
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where qJ is any pure mixed primitive of f and 4h is the mixed dif­

ference operator A1h 1 • • •  Anhn • 
From 8 .3 . 1 .  follows that formula 8 .3 .2 .  defines actually a dis­

tribution t/J (x, x' ) on IR 2n independent of the choice of the pure 

mixed primitive qJ. To see this it is sufficient to observe that Ajhj uj = 0 
for every distribution uj independent of Xj • 

8.3.3. DEFINITION. A distribution f is said to be integrable on 

IR n, iff f't (�) d� is convergent as (x, x' ) --+ ( - 00 n
' + 00 n ) . Then we 

write : 

8.3.4. iRJ(X)dx= x�'!!, tt(�)df 
n x '- +OOn 

For example, if n = 2 

f f(x1 , x2) dx1 dx2= '1'( + 00,+ 00 )-qJ ( + 00,-00 )- qJ(- oo,+ oo )+ '1'(- 00,- 00) JIR2 
where qJ is a primitive of f with respect to x.  

The integral of f on IR n can also be denoted by f f or simply JIRn 
by f t. Uniqueness and linearity properties are immediate conse-

quences of the corresponding properties for limits . In order to obtain 

further criteria it is convenient to introduce a suitable definition of 

bounded distributions . 

8.3.5. DEFINITION. A distribution f is said to be bounded on IR n, 
if and only if there exists r E /N� and F E C(/Rn)  such that: 

(i) f =D' F ;  
(ii) for every regular matrix A of order n, the function 

xir1 . . .  x;;rn F (Ax) is bounded on IRn. 
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The linearity property of boundedness is easily proved. 

8.3.6. DEFINITION. Given f E �(IR n ) and qJ E c oo(IRn ) ,  we write 

fE O(qJ) as I x  1 -+  00 or simply fEO(qJ), if and only if there exists a 

distribution fo bounded on IR n and a real e> 0, such that f = qJ fo ' for 

I x l > e . 
That being so, the following generalization of 6 .5 . 1 .  is easily 

obtained: 

8.3.7. THEOREM. If there exists a < - n such that f E O( I x I a ) , then 
f is integrable on IR n. 

On the other hand: 

8.3.8. THEOREM. Suppose fE O( l x l a )  with a < - n  and let h be a 
C oo  one-to-one mapping of IR n onto itself such that 

(i) the lacobian matrix [D; h) of h is regular on IR n and con­
verges to a regular matrix as I t  1 -+  00 , 

(ii) DTDi hjEo (t T ), for all r E IN; , i ,  j = 1 ,  . . . , n (9) . 

Then the classical substitution rule applies: 

1 f(X)dx =l f(h (t» l(h) dt . /Rn /Rn t 

We shall outline the proof only in the case when h is a non-de­

generate affine mapping, that is a mapping of the form h (t) = c +M(t) ,  
where c i s  any vector in IR n and M i s  a regular matrix of order n. This 

case may be taken as a model for the general case since h behaves 

asymptotically just as an affine mapping according to (i) . 

(9) As far as functions are concerned is understood that the stated conditions are to be 
taken in ordinary sense. 
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Put qJ(x) = ( 1 +X12 + . . .  + X; ) 1I2 and suppose fE O( l x l a ) , with 
a < - n. Then, it is readily seen that f E O(qJa ) , i .e .  there exists r E IN; 
and F E  C, such that f = qJa Dr F, with X1r\ . . . x;rn F (Ax) bounded on 
IRn for every regular . matrix A of ·order n. In such conditions it is 
easily found: 

f f(X) dx = (-l ) " T "f rp(Tl(X) F(x) dx , where I l r l l = r] + . . . + r
n · 

Now: 

and it can be seen, without difficulty, that the last integral is just 
equal to 

(-l) I I T "f f (h (t» l det M ldt . 

8.4. Partial and multiple integrals. 

Let us consider a distribution f(x,  y) on IRm+n, with x E IR m  and 

y EIRn  (rn, n = l ,  2, . . . ) .  The concept of partial integral f f(x, y) dy JlRn 
can be easily defined as a generalization of preceding concepts of 
partial and multiple integral, with similar properties . But there is a 
new property : 

8.4.1 .  THEOREM. If f(x, y) is integrable on IRm+n and in addition 

the integral f f(x, y) dy is convergent on IRm, then JlRn 
f f(x, y)dxdy = f ( f f(x, Y) dY) dx . J/Rm+n J/Rm JlRn 



1 67 

This is a consequence of a property for limits that we can state 
as follows : 

8.4.2. THEOREM. If f(x, y) is convergent as (x, y) � (+ OOm ' + oon ) 
and if in addition f(x, y) is convergent on IRm as y � + oon ' then 

lim f(x, y) = lim ( lim f(x, y») , 
X - + OOm X - + OOm y - + OOn 
y - + OOn 

PROOF. It is sufficient to prove this rule in the case m = n =  1 .  

Suppose that the hypothesis holds , Then there exist four integers r, s, 

t, u, two functions Fp F2EC(IR 2 ) ,  a function GEC(lR) and a num­
ber Il ,  such that f = �r D/ F;. = D: D

y
u F2 and 

F (x, y) Il 
(i) I � as (x, y) � ( + 00 , + 00 ) ; 

x r ys r! s !  

(1' 1' )  
F;(X, y) G (X) ' +  I h 

. /'D 
--- � , UnhOrm y on eac compact set In 1\ m as 

y U U !  

We can assume that t = r, u = s , Take £> 0, then according to (i) there 
exist a, b > 0 such that: 

8.4.3. 
Il -- < £  for x > a, y > b, 

r!  s !  

Take now r additional points Xj > G, s additional points Yk > b and con­
sider two pseudo-polynomials rg>l (x, y) , rg>/x, y) of degree (m, n) such 
that F;. - rg>l and F2 - rg>2 vanish on the lines x = xj ' y = Y k ' Then if we put 
Fo = F;. - rg>l ' we have f = �r D/ Fo ' Fo = F2 -rg>2 and it is easily seen that 
(i), (ii) are again satisfied with Fo in the place of FI and F2 (t = r, U = s) , 
since the coefficients of the pseudo-polynomials are obtained as 

linear combinations of the values of FI (x, y) and F2 (x, y) on the lines 
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X =Xj ' Y =Yk . Hence from 8 .4 .3 .  follows, with Fo in the place of FI , 
and taking the limit as Y � + 00 : 

G(x) 
s s !£  for x > a. 

Th b b ·  b ·  h " · I ·  h 
G (x) A 

e num er £ elng ar ltrary, t IS Imp les t at � - as 

x � + 00 ,  which means that A = Urn Urn f(x, y) . •  . ' x -+ + oo  y -+ + oo  

More generally : 

Xr r !  

8.4.4. If f(x, y, Z) , with x E/Rm, yE /Rn, zE/RP is convergent on /Rm + n 

as z� + oop and iff(x, y , z) is convergent on /Rm as (y, z) � (+ oon ' + oop) ' 
then 

8.5. Convolution of two distributions on /R. 

Consider two distributions f= DmF and g =DnG, where 

F, GEC(/R) .  Then we have: 

f(x- t) = �mF(x- t) = (_l )m �mF(x- t) 

so that, for every k = 0, 1 ,  . . .  

D/f(x- t) = (-l )k �kf(x- t) . 

This suggests to write by definition 

f(x- t) g (t) = f(x- t) D,"G(t) = i G) D," - k(G(t)D:f(x- t)) 



with 

G(t)D}f(x- t) = Dxm + k (F(x- t) G(t» , 

that is 

8.5.1 . f(x- t) g(t) = i (�) Dxm + kDtn - k (F(x- t) G(t)) .  
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It is easily seen that the "product" f(x- t) g(t) does not depend 

on the representation of the distributions f and g. We can prove it as 

we have done for the product of a C n function with a Cn distribution 

in 4. 1 .  The analogy between these two situations comes from the 

following proposition, which can be proved without difficulty, 

but which is not essential for the following subject: The mapping 

t � f(x- t) of IR into the space �(lR) is infinitely differentiable . 

Consider now the expression f(x- t)g (t-y) . We have two pos­

sible interpretations : 

f(x- t) g(t-y) = i G) Dxm + kDtn - k (F(x- t) G(t-y)) 

8.5.2. 

f(x- t) g (t-y) = � (7) (_l )kD,m- 'D; + '(F(x- t) G(t-y)) .  

Remembering that the functions F and G can be approached by 

two sequences {Fn } and { GJ of COO functions converging uniformly 

on each compact interval, it is readily seen that: 

8.5.3. The right members of the formulas 8 .5 .2 .  represent the same 
distribution. 

A direct proof of this proposition does not seem to be easy. 
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L+oo 8.5.4. DEFINITION. If the integral f(x - t) g (t)dt is convergent 
on /R , the distribution 

- 00  

hex) = f f(x - t) g(t)dt JIR 
is called the convolution of f and g and denoted by f * g .  

From this definition, taking into account the linearity property of 
the partial integral, as well as 8 . 5 . 1 . , follows immediately that the 
convolution is bilinear, that is ,  we have : 

whenever f1 * g and f2* g exist, and analogously for the right side. 
Moreover 

8.5.6. COMMUTATIVE LAW: If f* g exists, g * f  exists too, and 
f* g = g * f. 

PROOF. Suppose that f* g exists and put h = f* g, that is 

hex) = r f(x- t) g (t)dt. Then for each y E /R ,  we have: JIR 
h(X-y) =i f(x -y - t) g (t)dt 

IR 

and it is obvious that the last integral is still convergent with respect 
to (x, y) on /R 2. On the other hand , Jor each y E /R ,  we may perform 
on this integral the substitution t =  u-y, which gives : 

h(X -y) =i f(x - u) g (u -y)du . 
IR 

Now, taking 8 . 5 . 3 .  into account, it can be seen that the last integral 
is also convergent with respect to y Jor each xE/R .  In particular, for 
x = 0, we have : 



h ( -y) = r f ( - u) g (u -y) du . JIR 
Hence by the substitutions y = -x, u = - t :  

that is ,  h = g * f . • 

h(x) = r g(x - t) f(t) dt, JIR 

1 7 1 

In the general case the convolution is not associative. But the 

following criterion can be used in several cases : 

8.5.7. If r f(x-y) g(y - t) h (t) dy dt, where f, g, h EliJ, is convergent JIR2 
on IR , then 

( f* g) * h = f* (g * h) = r f(x -y) g (y - t) h (t) dy dt. JIR2 
This is an immediate consequence of 8 .4 .4 .  

In turn, from the differentiation and substitution properties for 

partial integrals and from 8 .5 .6 . , follows immediately, taking defini­

tion 8 .5 .4. into account: 

8.5.8. DIFFERENTIATION PROPERTY. If f* g exists, then D(f* g) 
exists too, and 

D(f* g) = (Df)* g = f* (Dg) . 

8.5.9. TRANSLATION PROPERTY. If f* g exists, then for every 
h EIR 

On the other hand: 



1 72 

8.5.10. If f * g and f * (xg) exists, then (xf )  * g exists too and 

x (f* g) = (xf ) * g +f* (xg) . 

PROOF. It is sufficient to observe that (xf ) * g is given by 

r (x- t) f(x - t) g (t)dt = x r f(x - t) g(t)dt- r f(x- t) tg (t)dt . •  Jm Jm Jm 
This important property shows that multiplication by x, with re­

spect to convolution, behaves like a derivation operator. 
Finally, we can analogously prove that 

8.5.1 1 .  If f * g exists, then 

8.6. Convolution of distributions whose carrier is bounded on 
the left and ( or) on the right. 

We shall denote by §'*(IR) or simply §'* the vector space of all 
distributions on IR with bounded carrier. 

8.6.1 .  THEOREM. The convolution f* g exists whenever fE§2J* and 

g E � Besides, 
(i) f* (g * h) = (f* g)* h, whenever f, g E �* , h E §2J; 

(ii) 8* f = f, !or every f E �. 
PROOF. a) Suppose fE �* , g E §2J. Then there exists a bounded 

interval J such that g(x - t)f(t) vanishes for (x , t) f£. IR x J. Hence 

r g (x - t)f(t) dt is convergent on IR and gives f* g. Jm 
b) Suppose f, g E §2J* , h E  §2J. Then by an argument similar to the 

preceding it is shown that the integral 
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L f(x -y) g (y - t) h (t) dy dt /R 2  

is convergent on IR , and this according to 8 .5 .7 . implies (i) .  
c) Consider f=D nF, where F E C(lR),  and put �=FH, F2= F-F) . 

Now: 

Hence 8* D nF) = Dn+ ) (H* F',) = DnF) . It is seen analogously that 
8 * D nF2 = DnF2 ' so that 8* f= f . • 

This theorem along with 8 .5 . 5 .  can be expressed by saying : 

8.6.2. The space �* is an algebra under convolution and � is a 
module over that algebra, having 8 as unit element. 

Property (ii) in 8 .6 . 1 .  can be expressed explicity by the important 

formula 

f(X) =L 8(x - t) f(t) dt (DIRAC' S FORMULA) . 
IR 

We shall denote by sz: (respectively � )  the vector space of all 
distributions vanishing on the left (resp . on the right) of 0 and by .@. 
(resp . �) the space of all distributions whose carrier is bounded on 
the left (resp. on the right) of O. 

8.6.3. THEOREM. The space .@. (resp. �)  is an algebra under 

convolution and � (resp. � )  is a subalgebra of � (resp. �). 
In fact, if f, g E� , there exists a real c such that f and g vanish 

for x < c. Then f(x- t) g (t) vanish for t < c and t >x - c .  Hence 

L f(x- t) g (t)dt is convergent on IR and vanishes for x < 2c. The 
IR 

remaining parts of the theorem are easily proved . •  
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8.7. Convolution and order of growth, tempered distributions 

and rapidly decreasing distributions (on IR). 

Several criteria can be found, connecting convolution with order 

of growth of distributions .  One of these criteria is the following : 

8.7. 1 .  THEOREM. Let a and f3 be two real numbers satisfying one 
of the following conditions 

(i) a +f3 < - 1  and a >  0 ;  

(ii) a + f3 < - 3 and f3 s a < O .  

On the other hand, let f and g be two continuous functions on IR such 
that f E O(xa ) and g E O(xP ) ( l O) . Then f* g exists and f* gE O(xa ) .  

PROOF. a) Suppose a +f3 < - 1  with a � O. Then as f E O(xa ) ,  
there exists a number M such that I f(x) 1 s M( I + I x l ) a for all x EIR .  
Hence 

since a > O. 

So the integral 

f f(x - t) g (t)dt is dominated by M( I + I x l ) a f ( 1 + I t l )a l g (t) l dt. Jm Jm 
Since g E O(xP ) and a+f3 < - 1 , the last integral exists . Hence the first 

integral is uniformly convergent on each compact interval in IR and 

its absolute value is  s MK( I + l x l )a where K= f ( I + l t l )a l g (t) l dt. Jm 
Consequentely, f* gE O(xa ) .  

b)  Suppose now a + f3 < - 3 ,  with f3 < a < 0,  and consider the integer 

n such that 0 < a + n <  1 .  Then it is easily seen that a +f3+ n < -I so 

that xkf* xn- kg exists and is O(xa+ k ) for k= 0, 1 ,  . . . , n according to the 

previous conclusion . Hence (cf. 8 .5 . 1 0) :  

( 1 0) It is understood:  "in ordinary sense as x � 00 " .  



x"(f* g) = � (:) (X kj* x n -
kg) E O(x a+ ,, ) 

so that f* gE O(xa ) . •  
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8.7.2. COROLLARY. Let a be a real < - 2, Aa the set of all continuous 
functions f on IR such that f E O(xa ) as X � OO  and Ba the set of all 
continuous functions g on R such that there exists a real number /3 > 0 

(depending on g) satisfying the conditions a +/3 < - 1  and g E o (xf3 ) • 

Then Aa is an algebra under convolution and Ba is a module over that 
algebra. 

PROOF. Applying to the theorem (changing the roles of a and 

f3), it is readily seen that f * g exists and belongs to Bo: whenever f EAo: 
and g EBo: ;  and that f* g EA a whenever f, g EAo: . So we have only to 

prove the associative law: f* (g * h) = (f* g)* h , f, g EAa , h EBa . But 
this can be easily seen applying 8 .5 .7 .  as we did for 8 .6 . 1 . • 

8.7.3. Remark: The preceding theorem and corollary can be extended 

to locally summable functions according to the following criterium 

(FUBINI-TONELLI THEOREM) : If f, g EL(lR), then 

r f(x- t) g (t)dt is convergent almost everywhere in IR and defines JIR 
a function h EL(lR) .  It can still be stated that the preceding integral 

is convergent in the mean on IR , so that f* g exists in the distribu­

tional sense. Applying 8 . 5 . 1 1 . and taking the Fubini-Tonelli theorem 

into account, it is a simple matter to obtain the following generaliza­

tion of 8 .7 . 1 . : 

8.7.4.  THEOREM. Let a, /3 be two real numbers satisfying the 
conditions (i) or (ii) of 8 .7 . 1 . , a ', /3'  two real numbers such that 
a '  + /3' :s; 0 and f, g two locally summable functions such that 
fE O(xaea ' l x l ) and gE O(xf3ef3 ' lx l ). Then f* g exists and f*gEO(xaer l x l ) , 
where Y= max ( a ', /3'  ) .  
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For the proof it is convenient to consider I and g in the form 

1 = /) +/2 ' g = g ) + g2 ' with II '  g ) EC+ , 12 , g2E C_ ,  remembering that 
I) * g 1 E C + ' 12 * g 2 E C _ 

. 

From 8 .7 .4 . is easily deduced a corresponding generalization of 
8 .7 .� .  

Now, applying the differentiation property, we can derive frop! the 

preceding criteria corresponding rules for distributions. For example, --... 
let us denote by A a for every a < -2, the set of all distributions of the 

p 
fonn f = k�DnkF. ' where p, n "  . . .  , np are arbitrary integers and F. 

locally summable functions such that �E O(xa ) ,  and by Ba the set 

q 
of all distributions of the fonn g = k�"Gk where q ,  r" . . .  , rq are 

arbitrary integers and Gk locally summable functions such that 

Gk E O(xP )  with a +f3< - 3  and a <f3 (13  depending on g) .  Then it is '"'-' 
easily seen that A a  is an algebra under convolution and Ba a module 

over Aa . 

8.7.5. DEFINITION. A distribution I on IR is said to be tempered 

(slowly increasing or of polynomial type) if there exists a real a 
such that IE O(xa ) (in distributional sense) . 

An equivalent definition to this is the following: I is tempered if 

and only if there exist two integers n ,  k and a/unction FEC(lR) such 

that I =DnF and FE O(Xk ) in ordinary sense . 
"-' "-' 

We shall denote by !!lJ(IR) or simply by !?lJ the set of all tempered "-' 
distributions . It is readily seen that §!J is a vector space closed under D. 

8.7.6. DEFINITION. A distribution f on IR is said to be rapidly de­

creasing if and only if for every a< O, I can be represented in the 
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p 
fonn f = �lDn.F" where p, n l ' . . .  , np are arbitrary integers (n, "' O, 

p � 1 )  and � continuous functions such that � E O(xa ) in ordinary 

sense. r--.. 
We shall denote by §J the set of all rapidly decreasing distribu-

tions on IR . From preceding results it is easily deduced: 

r--.. '-" 
8.7.7. COROLLARY. §J is an algebra under convolution and §J a 

r--.. 
module over §J. 

v 
A similar result can be obtained concerning the space §J of all 

distributions of exponential type (that is ,  of the form f = Dn F, where 

F is a continuous function on IR such that F E  O(ea 1 x l ) for some real 
/\ a) and the space §J of all exponentially decreasing distributions 

(that is, of the form f = DnF, where F is a continuous function such 

that FEO(ea 1 x l ) for all real number a) .  
/\ r--.. '-" v 

Observe that §J* c §Jc §Jc §J C §!  C §!. 

8.7.8. Convolution in IRn .  The concept of convolution of distribu­

tions on IR is readily extended to the case of distributions on IR n , and 

all preceding properties of convolutions can be generalized to this 

case : only we are now concerned with derivation operators , transla­

tion operators ,  etc. ,  corresponding to the different variables . 

Theorem 8 .6 . 1 .  is readily extended to distributions of several 

variables . As for theorem 8 .6 .3 . it gives place to new possibilities in 

the case of n variables.  

Let r be any convex cone in IRn whose vertex is at the origin 
'"'-' 

and not reducing to a half space. We shall denote by §!r the set of all 

distributions on IR n vanishing outside some cone a + r with a EIRn. 
Then it is easily seen that §r is an algebra under convolution and 
�r a subalbegra of �r ; besides, there exists a maximal subspace of 

� distinct from §!r which is a module over �r . 
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Finally, the criteria given in  8 .7 .  can also be  extended to the 
case of n variables and combined between them and the preceding 

ones, according to the different variables . 
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