JOSE SEBASTIAO E SILVA

TEXTOS
DIDACTICOS

Volume III

SERVICO DE EDUCACAO E BOLSAS

FUNDACAO CALOUSTE GULBENKIAN LISBOA



Reservados todos os direitos de acordo com a lei

Edi¢do da
FUNDACAO CALOUSTE GULBENKIAN

Av. de Berna — Lisboa
1999

ISBN 972-31-0971-9
Depésito Legal n° 148 805/00



II.1
THEORY OF DISTRIBUTIONS*

* Este texto tem por base apontamentos coligidos por diversos alunos de José Sebastido e
Silva na sequéncia de um curso que realizou em 1958 na Universidade de Maryland, e que
posteriormente foram utilizados, e por ele revistos, na Faculdade de Ciéncias de Lisboa.



CHAPTER VIII

PARTIAL INTEGRALS AND
MULTIPLE INTEGRALS. CONVOLUTION.

8.1. Partial limits for distributions of two variables.

Let I and J be two intervals in /R, and suppose that J is un-
bounded on the right. Given two functions f(x, y) and g(x) respec-
tively on I xJ and I, f(x, y) is said to converge uniformly on / to g(x)
as y—+, if and only if for every £>0, there exists a n€J (inde-
pendent of x), such that: | f(x, y)—g(x)| <& for all y>7 and xE1.

On the other hand, if & is any real, we write f(x, y)Eo(y*)

fx y)
ya

uniformly on / as y— + o, if and only if (iff) — ( uniformly

on I as y—+ oo, Put for every fEC(x J):

Fx y) f FE DdE, 3,f y)= f £(x, mydn,

where x,, (respectively y,) is a fixed point, arbitrarily chosen in /
(respectively J). The following lemma is easily proved (cf. 6.1.3.):

8.1.1. LEMMA. If a>-1 and f(x, y)€o(y*) uniformly on I as
y—+ o, then
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S.f€0(y*) and I fEo(y*)

uniformly on I as y— + .
This lemma leads to the following:

8.1.2. DEFINITION. If fe2(IxJ) and a>-1, we write
f(x, y)Eo(y*) on I as y—+x, iff there exist m,n€/N, and
FeC{xJ) such that:

(1) f(x, y)=DI"DJF (x, y);

(2) F(x, yy€o(y**") uniformly on each compact interval /*C1I
as y—> + .7

Applying this definition and the lemma, the following properties
are easily shown:

8.13.If f(x, y)Eo(y*) and g(x, y)Eo(y*) on I as y— + o, then, for
all A, uecC:
Af+ug€o(y*)onlasy—>+o,

8.14. If f(x, y)Eo(y*) on I as y—>+x, then D_f(x, y)Eo(y*) on I
as y— + o,

8.1.5. If f(x, y)Eo(¥*) on I as y—+ o and ¢(x) is multipliable by
£(x ), then (D (x, ) Eo(y*) on I as y—>+c.

Consider now g€ (1) and fE€ Y (I xJ); then:

8.1.6. DEFINITION. We say that f(x, y) converges on / to g(x) as
y—+0o, if and only if f(x, y)—g(x)Eo(1) on I as y—>+oo. The
distribution f(x, y) is said to be convergent on / as y— + oo, iff there
exists a distribution g on I satisfying the preceding condition.

(7) A more general condition could be required instead of (2), but this definition is
quite sufficient for applications.
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The uniqueness property as well as the linearity property of
convergence are in this case immediate consequences of 8.1.3. Then
we can write:

gx)=1lim f(x, y) or g(x)=f(x, +) on I,

y—>+

to express that f(x, y)—=g(x) onlas y—+ o,

On the other hand, the following important property, which
does not hold in classical analysis, is an immediate consequence of
8.1.4.

8.1.7. DIFFERENTIATION PROPERTY. If f(x, y) = g(x) on I as
y—+, then D_f(x, y)— D_g(x) on I as y— + o, that is:

D_lim f(x, y)=lim D, f(x, y) on I.

y—>+0o y—>+o

It turn, from 8.1.5., follows

8.1.7. MULTIPLICATION PROPERTY. If f(x, y) = g(x) onl as
y—>+ and @(x) is multipliable by f(x, y), then:

lim [p(x)f(x, )]=@x) lim f(x, y) on L.
y=+e y>+e
Moreover, applying 8.1.7. and the linearity property, it is easily
shown:

8.1.8. SUBSTITUTION PROPERTY. If f(x, y)—g(x) on I as
y—+o, and if h is a mapping of an interval I* into I, such that
f(h(t),y) exists (cf. 6.8.), then g(h(t)) exists too and f(h(t),y) —
—g(h(t)) on I* as y— + oo,

This substitution rule concerns the parameter x. Substitution
rules concerning the converging variable y can be easily found as
generalization of the criteria given in 6.6.
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The “O” symbol is extended to distributions f(x, y) on I x J, with
respect to y, in the following way:

8.1.9. DEFINITION. If a>-1, we write f(x, y)EO(y*) on I as
y—>+ oo, if there exist m, nE€/N, and F € C(I xJ) such that:

(1) f(x, y)=D"D]F(x, y);

(1) for every compact interval I*C I, there exists a number M
such that

F(x, y)
(1 +|y|)a+n
More generally, if pEC>(J), we write f(x, y)EO(@(y)) on [
as y—+o, if and only if there exists a real y, and a distribution

fo(x, y)EO(1) on I as y—+ such that f(x, y)=@(y)f,(x, y), for
y>y,and xE L.

<M on [*xJ.®

Besides the linearity property, it is easily shown:

8.1.10. DIFFERENTIATION PROPERTY. If o is any real
and f(x, y)EO(y®) on I as y—=>+x, then D f(x, y)€EO(y*) and
D f(x,y)EO(y*")onlasy—>+x.

Obviously all preceding considerations extend to the case when
J is an interval unbounded on the left, and y— — .

8.2. Partial integrals for distributions of two variables.

Let I and J be any two intervals in /R, f(x, y) a distribution
on I xJ. A distribution ¢(x, y) such that D, @(x, y)=f(x, y) will be
called a (partial) primitive of f(x, y) with respect to y. On the other
hand, a distribution u (x, y) on I xJ is said to be independent of y, if

(8) The choice of (1+|y|)**" instead of y*** is only to make the quotient continuous on
I*xJ.
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and only if it reduces to a distribution g of the variable x only, i.e., iff
it is of the form u(x, y)=D"G(x) withm €/N,, GEC().

8.2.1. LEMMA. A distribution u on IxJ is independent of y, iff
D,u=0.
PROOF. It is readily seen that, if u is independent of y, then

D,u=0. Suppose now conversely that D, u=0 and assume u=D,"D;U

with m, n€/N, and UE C(I). Then D,u=D;"D;*'U=0 and therefore
(cf. 7.2. axiom 4) U must be of the form

m—1 n
Ux, y)= Zx"a,.( y)+ Z y/b,(x), with a,€C(J) and b,EC(I).

Hence u(x, y)= D"DyU (x, y)=n!D"b (x). &

That being so, it is easily proved, as in the case of one variable:

8.2.2. THEOREM. Every distribution f on I xJ has infinitely many
primitives with respect to 'y and two such primitives differ by a dis-
tribution independent of y.

We are now able to define, in a natural way, the concept of par-
tial (or parametric) integral of a distribution f(x, y). It will be suf-
ficient to consider integrals on /R. Let I be any interval in /R and
feEY(Ix/R); then:

8.2.3. DEFINITION. The integral f f(x, y)dy is said to be conver-
IR

gent on /, if and only if there exists a primitive ¢ of f with respect
to y wich is convergent on I as y—+0o0 and as y——o0. Then, we

Writef fx, y)dy=@(x, +0)—@(x, —) on I.
IR

From 8.2.2., follows at once the uniqueness of the partial inte-
gral. From the properties of partial limits we can deduce the linearity
property for partial integrals, as well as the following properties:
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8.2.4. DIFFERENTIATION PROPERTY. If f f(x, y)dy is con-
IR

vergent on I, so is f f. (x, y)dy and
IR
Dxf f(x, y)dyzf D, f(x, y)dyon L
IR IR

8.2.5. SUBSTITUTION PROPERTY. If f fCx, y)dy=g(x) on I
/R

and if h is any continuous mapping of an interval I* into I such that
f(h(t), y) exists, then

J;Rf(h(l‘), y)dy=g(h(1)) on I'*.

As for substitutions concerning the integration variable y, the
criteria established in 6.6. can be easily extended to partial integrals.
In particular, we have, for all hE/R:

8.2.6. fCx, y+h)dy= f f(x, y)dy.
IR IR
1
8.2.7. J; Rf (x, hy) dy=mJ;Rf (x, y)ady.

Criterium 6.3.6. can also be extended to partial integrals:

8.2.8. THEOREM. If for any compact interval I* C I, there exists
a compact interval K such that f(x, y)=0 on I*x(/R—-K), then the

integral f f(x, y)dy is convergent on 1.
IR

PROOF. Suppose f=D/"D;F, with FE€ C(I x/R). The hypothe-
sis implies that, in a set {x&EI*, y<-y,}, F(x, y) reduces to a pseudo
polynomial P of degree <(m, n), which we can assume to be zero,
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otherwise we could subtract P from F (remember that P is uniquely
defined by the value of F(x, y) for m values of x in I* and n values
of y in /R). Then there exists a primitive of f with respect to y,
say ¢, which is zero for x€I*, y<-y, and reduces to a function
y independent of y for x&I*, y>y,. Now, it is easily seen that
p—y on I as y—=>+o and ¢—>0 on I as y—>-, so that

fx y)dy=y(x). ¢
/R

Finally, the following extensions of 6.5.1. and 6.5.2. are easily
proved:

8.2.9. THEOREM. If f f(x, y)dy is convergent on I, then fEO0(y™)
IR

on I as y— . On the other hand, if there exists ax<—1 such that

f€O(y*) on I asy— =, then f f(x, y)dy is convergent on 1.
IR

Remarks. 1 - If f(x, y) is a function, then for the convergence of

f(x, y)dy on I in distributional sense, it is not sufficient (nor nec-
IR

essary) that the integral be convergent for each x&€I. Obviously,
a sufficient condition is that the integral be uniformly convergent
on each compact subinterval contained in I. More generally, it can
be proved that, if f is summable on each set I* x/IR, where I* is a

compact interval contained in I, then | f(x, y)dy is convergent on I
IR

in distributional sense.
2 — The differentiation property can be associated with the line-
arity property in a more general property. Let p(D) be a derivation

polynomial, that is an operator of the form p(D)=2akD", with

a,,...,a €C. Then we have
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p(D,) f £(x, y)dy= f p(D)F(x y)dy on ]
/R /R

whenever the first integral is convergent on /.

Example. The preceding remarks offer a simple justification of for-
mula in 6.3.5. - 2. Observe that:

ixy
8.2.10. f ©  dy=ne" for each xEIR.
R 1+y*

This can be easily found by the method of residues. Besides, as x, y
are real variables, we have |e”|=1 and

eixy

1
- 1+y?

for all x, yE/R.

1+y?

Thus the integral 8.2.10. is dominated, for all x €/R, by the integral

f (1+y?*)~'dy, which is obviously convergent. Hence, according to
IR

the Weierstrass test, the first integral is uniformly convergent on /R
and therefore convergent on /R in distributional sense. Consequently,

1-D? f e (I_D"z)ewd f =% IR
=1 e~ on )
( ) N +y e 14y y R y

On the other hand,
DZe"*l=—D (e *lsgn x)=e ¥1-2¢7151 5 (x),
so that

(1-D?)e *1=26(x).



163

Hence, from 8.2.10. follows:

8.2.11. f e™dy=2nrd(x) on /R.
IR

8.3. Multiple integrals (on /R").

Let f be a distribution on /R" and A any complex number. We say
that f(x) converges to A as x— + oo _if and only if there exist r €/N;}
and FEC(/R") such that f =D"F and

F(x) N A

Then, we write A= lim f(x) or A=f(+ ).

xX—>+00
n

The uniqueness of the limit, as well as the linearity property can
be proved by an argument similar to the one used in the case n=1.
The concept of convergence as x —— oo is analogously defined.

On the other hand, every distribution ¢ such that D¢ =f (where
D=D, ---D,) will be called a pure mixed primitive of f. It is easily
seen that:

8.3.1. THEOREM. Every f € 2(/R") has infinitely many pure mixed
primitives and two such primitives differ necessarily by a distribution

n
of the form Z u, where u, is a distribution independent of x , (that is,

of the form D"u where u is a continuous function on /R" independent

of x;).

That being so, we shall write by definition.

8.3.2. f )
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where ¢ is any pure mixed primitive of f and Zh is the mixed dif-
ference operator A, --- A, .

From 8.3.1. follows that formula 8.3.2. defines actually a dis-
tribution @(x,x’) on /R>" independent of the choice of the pure
mixed primitive ¢. To see this it is sufficient to observe that Ay, u;=0
for every distribution &, independent of x,.

8.3.3. DEFINITION. A distribution f is said to be integrable on

/R", iff f : f(&)déE is convergent as (x,x')—=> (-, , + ). Then we

write:
8.3.4. fx)de= lim f " f(&)dE.
/IR" x—-o,  Jx

For example, if n=2
ﬁsz(xl,xz)dxl Ax,= P (+%0,+0)=(+0,—0)—~ (=0, + %)+ (- 0,~®)
where ¢ is a primitive of f with respect to x.

The integral of f on /R" can also be denoted by - f or simply
by f f. Uniqueness and linearity properties are immediate conse-

quences of the corresponding properties for limits. In order to obtain
further criteria it is convenient to introduce a suitable definition of
bounded distributions.

8.3.5. DEFINITION. A distribution f is said to be bounded on /R",
if and only if there exists r €/Njand F €C(/R") such that:

(1) f=D"F;

(1) for every regular matrix A of order n, the function
x;"---x7 F(Ax) is bounded on /R".
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The linearity property of boundedness is easily proved.

8.3.6. DEFINITION. Given fEZ(/R") and ¢ EC>(/R"), we write
FEO() as |x|— = or simply f EO(¢), if and only if there exists a
distribution f, bounded on /R" and a real £>0, such that f=¢f,, for
x|>€.

That being so, the following generalization of 6.5.1. is easily
obtained:

8.3.7. THEOREM. If there exists ot<—n such that f EO(|x|*), then
f is integrable on /IR".

On the other hand:

8.3.8. THEOREM. Suppose f EO0(|x|*) with aa<—n and let h be a
C* one-to-one mapping of IR" onto itself such that

(i) the Jacobian matrix [D,h] of h is regular on /R" and con-
verges to a regular matrix as |t|— o,

(ii) D'D,h,Eo(t"), for allr EIN;, i, j=1,...,n ®.

Then the classical substitution rule applzes.

h
F)dx = f f(h(t))l./( )‘dt
/R" /IR" t

We shall outline the proof only in the case when & is a non-de-
generate affine mapping, that is a mapping of the form h(¢)=c+M(¢),
where c is any vector in /R" and M is a regular matrix of order n. This
case may be taken as a model for the general case since h behaves
asymptotically just as an affine mapping according to (i).

(9) As far as functions are concerned is understood that the stated conditions are to be
taken in ordinary sense.
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Put ¢x)=(1+x2+---+x7)" and suppose fEO(|x|%), with
o <—n. Then, it is readily seen that f € O(¢*), 1.e. there exists r E/NJ
and F€C, such that f=@*D"F, with x;"---x.» F (Ax) bounded on

/R" for every regular matrix A of order n. In such conditions it is
easily found:

ff(x)dx=(—1)""‘f(p")(x)F(x)dx, where ||r||=r,+--- +7,.

Now:

f fe)dx=(=Dl! f POX)F (x)dx=f(—1)”"'(0(’)(h (O)F(h(t)|det M|dt

and it can be seen, without difficulty, that the last integral is just
equal to

(=1)l] f F(h(t)|det M|dt.

8.4. Partial and multiple integrals.
Let us consider a distribution f(x, y) on /R™*", with x&/R™ and
y&/R" (m, n=1, 2,...). The concept of partial integral f f(x, y)dy
IR"
can be easily defined as a generalization of preceding concepts of
partial and multiple integral, with similar properties. But there is a
new property:

8.4.1. THEOREM. If f(x, y) is integrable on [R™" and in addition

the integral f f(x, y)dy is convergent on /IR™, then
IR"

f f(x,y)dxdyzf ( f(x,y)dy)dx.
/Rm+n /Rn

/R™
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This is a consequence of a property for limits that we can state
as follows:

8.4.2. THEOREM. If f(x, y) is convergent as (x,y) — (+©_, +00 )
and if in addition f(x,y) is convergent on IR™ asy —+x_, then

lim f(x,y)= lim ( lim f(x,y)).
xX—>+00 x—>+0o, y—+o,

y—+o0o,

PROOF. 1t is sufficient to prove this rule in the case m=n=1.
Suppose that the hypothesis holds. Then there exist four integers 7 s,
t, u, two functions F,, F,€C(/R?), a function GEC(/R) and a num-
ber A, such that f=D'D;F,=D!D}F, and

Fl(x’y)_> ﬂ'

x"y* rls!

®)

as (x, y) = (+ 00, +00);

ey  GX)

(i1)
y u!

, uniformly on each compact set in /R™ as
y— + 00

We can assume that t=r, u=s. Take £>0, then according to (i) there
exist a, b>0 such that:

Fl(x, y) _ l

x"y* rls!

8.4.3. <é& for x>a, y>b.

Take now r additional points x; > a, s additional points y, > b and con-
sider two pseudo-polynomials P, (x, y) , P,(x, ¥) of degree (m, n) such
that F; —%, and F,—%, vanish on the lines x=x,, y=y,. Then if we put
F,=F-%,, we have f=D/D’F,, F,=F,-%, and it is easily seen that
(1), (1) are again satisfied with F; in the place of F, and F, (t=r, u=s),
since the coefficients of the pseudo-polynomials are obtained as
linear combinations of the values of F,(x, y) and F, (x, y) on the lines
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x=x;, y=y,. Hence from 8.4.3. follows, with F; in the place of F|,
and taking the limit as y—+

Gx) A
——|=ssle for x>a.
x" r!
G A
The number € being arbitrary, this implies that ) ——as
x’ r!

x— + o, which means that A= lim lim f(x, y). ¢

X—>+4+0 y—>+400

More generally:

84.4.If f(x,y,2), withxE/R™, yE/R", ZE/R” is convergent on /[R™*"
asz—+ and if f(x,y,2) is convergent on IR™ as (y,2)—=>(+ , +),
then

lim f(x,y,2)= lim ( lim f(x,y, z))
y—>+oon y-——)+o:>n Z-—)+cﬂp
z-—>+mp

8.5. Convolution of two distributions on /R.

Consider two distributions f=D™F and g =D"G, where
E GEC(R). Then we have:

fx=0)=D"F(x—-t)=(-1)"D"F(x~t)
so that, for every k=0, 1,...
D!f(x—1)= (-1} D (x~1).

This suggests to write by definition

fx-1)gt)=f(x-t)D'G(t) = z ( Z) D/~XG()D/f(x—1))
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with
G()D!f(x—t)=D***(F(x—1) G(2)),

that is

- (N
8.5.1. f(x—t)g<t>=20( k)Dx’"“"D,"”‘(F(x—t)G(t)).

It is easily seen that the “product” f(x—1t)g(t) does not depend
on the representation of the distributions f and g. We can prove it as
we have done for the product of a C” function with a C, distribution
in 4.1. The analogy between these two situations comes from the
following proposition, which can be proved without difficulty,
but which is not essential for the following subject: The mapping
t—f(x—1t) of IR into the space Z(/IR) is infinitely differentiable.

Consider now the expression f(x—t)g(t—y). We have two pos-
sible interpretations:

— (M
Fae-0ga-= 3 (7| DDy Fx=1) G-
=0

Remembering that the functions F and G can be approached by
two sequences {F,} and {G,} of C* functions converging uniformly
on each compact interval, it is readily seen that:

8.5.3. The right members of the formulas 8.5.2. represent the same
distribution.

A direct proof of this proposition does not seem to be easy.
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+00
8.5.4. DEFINITION. If the integral f f(x—1)g(t)dt is convergent
on /R, the distribution -

he) = [ fa-ngar
is called the convolution of f and g and denoted by fx*g.

From this definition, taking into account the linearity property of
the partial integral, as well as 8.5.1., follows immediately that the
convolution is bilinear, that is, we have:

8.5.5. (af,+Bf)xg=o(f,xg)+PB(f,xg), Ya,BEC,

whenever f,*g and f,* g exist, and analogously for the right side.
Moreover

8.5.6. COMMUTATIVE LAW: If fxg exists, g f exists too, and

frg=g*f.
PROOF. Suppose that f+*g exists and put h=fx*g, that is

h(x)= f f(x—1t)g(t)dt. Then for each yE/R, we have:
IR

h(x—y)=£Rf(x—y—t)g(t)dt

and it is obvious that the last integral is still convergent with respect
to (x, y) on /R% On the other hand, for each yE/R, we may perform
on this integral the substitution ¢=u—-y, which gives:

h(x—y)=J;Rf(x—u)g(u—y)du-

Now, taking 8.5.3. into account, it can be seen that the last integral
is also convergent with respect to y for each x€/R. In particular, for
x=0, we have:
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wen =] fCwgydu
Hence by the substitutions y=—x, u=—t:
h(x)=J;Rg(x—t)f(t)dt,
that is, h=gxf. &

In the general case the convolution is not associative. But the
following criterion can be used in several cases:

8.5.7. Iff 2f(x—y)g(y—t)h(z‘) dy dt, where f, g, h€EZ] is convergent
/R

on IR, then

(Frgyeh=fr(gem=| fagO-nh@dydr

This is an immediate consequence of 8.4.4.

In turn, from the differentiation and substitution properties for
partial integrals and from 8.5.6., follows immediately, taking defini-
tion 8.5.4. into account:

8.5.8. DIFFERENTIATION PROPERTY. If f* g exists, then D(f+ g)
exists too, and

D(f+g)=(Df)xg=f*(Dg).

8.5.9. TRANSLATION PROPERTY. If fxg exists, then for every
h&€/R

T(f+xg)=(1,f)*g=f*(1,8).

On the other hand:
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8.5.10. If fxg and fx(xg) exists, then (xf)* g exists too and

X(frg)=(xf)*g+f*(xg).

PROOF. It is sufficient to observe that (xf)+*g is given by

f(x—t)f(x—t)g(t)dtzxf f(x—t)g(t)dt—f f(x—t)tg(t)dt. &
/R /R /R

This important property shows that multiplication by x, with re-
spect to convolution, behaves like a derivation operator.
Finally, we can analogously prove that

8.5.11. If fx g exists, then

e*(f+g)=(e"f)*(e”g) Va€EC.

8.6. Convolution of distributions whose carrier is bounded on
the left and (or) on the right.

We shall denote by Z,(/R) or simply & the vector space of all
distributions on /R with bounded carrier.

8.6.1. THEOREM. The convolution f* g exists whenever f € Y, and
gE Y. Besides,
(i) fx(gxh)=(fxg)*h, whenever f, gEY,, hED,
(ii) Ox f=f, for every fEY.
PROOF. a) Suppose fE 2, g €Y. Then there exists a bounded
interval J such that g(x—¢)f(¢) vanishes for (x, ) &/RxJ. Hence

f g(x—1)f(t)dt is convergent on /R and gives fx*g.
IR

b) Suppose f, g€ Y, h€ Y. Then by an argument similar to the
preceding it is shown that the integral
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flef(x—y)g(y—t)h(t)dydt

is convergent on /R, and this according to 8.5.7. implies (i).
c) Consider f=D"F, where FEC(/R), and put F,=FH, F,=F-F,.
Now:

H+F = f “H(x—t)F,(t)dt= f "F.(t)dt.
0 0
Hence o0*D"F,=D""'(HxF,)=D"F,. It is seen analogously that
0% D"F,=D"F,, so that §xf=f. &

This theorem along with 8.5.5. can be expressed by saying:

8.6.2. The space Yy is an algebra under convolution and &J is a
module over that algebra, having J as unit element.

Property (ii) in 8.6.1. can be expressed explicity by the important
formula

f(x)= f/R S(x—1t) f(t)dt (DIRAC’S FORMULA).

We shall denote by &7, (respectively 27 ) the vector space of all
distributions vanishing on the left (resp. on the right) of 0 and by ﬁ
(resp. g ) the space of all distributions whose carrier is bounded on
the left (resp. on the right) of 0.

8.6.3. THEOREM. The space ﬁ (resp. D) is an algebra under
convolution and & (resp. &) ) is a subalgebra of ﬁ (resp. 9 ).

In fact, if f, g Eﬁ , there exists a real ¢ such that f and g vanish
for x<c. Then f(x—t)g(¢) vanish for t<c and r>x-c. Hence

f f(x—t)g(t)dt is convergent on /R and vanishes for x <2c. The
IR

remaining parts of the theorem are easily proved. ¢
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8.7. Convolution and order of growth, tempered distributions
and rapidly decreasing distributions (on /R).

Several criteria can be found, connecting convolution with order
of growth of distributions. One of these criteria is the following:

8.7.1. THEOREM. Let o and B be two real numbers satisfying one
of the following conditions

(i) x+fB< -1 and a=0;

(ii) a+f<-3 and f=<ax<O.
On the other hand, let f and g be two continuous functions on IR such
that fEO(x*) and gE O(x?)"?. Then f+g exists and f+gE O(x?).

PROOF. a) Suppose o+ <—1 with &=0. Then as fEO(x%),
there exists a number M such that | f(x)|<M(1+|x|)* for all xE/R.
Hence

| Fe—1)| = M(1 +|x—1))*< M(1 + |x|)*(1 +|¢])* Vx, tEIR,

since a=0.

So the integral

f f(x—1)g(t)dt is dominated by M(l+|x|)“f (1+]t))*|g(®)|at.
/R /R

Since g€ O(x*) and x+f < — 1, the last integral exists. Hence the first
integral is uniformly convergent on each compact interval in /R and

its absolute value is = MK(1+|x|)* where Kzf (1+|t))*|g(@®)|at.
Consequentely, f+ g€ O(x?*). &

b) Suppose now o+ <-3, with B= & <0, and consider the integer
n such that O< a+n<1. Then it is easily seen that a+f+n<-1 so
that x*f+ x"*g exists and is O(x***) for k=0, 1,..., n according to the
previous conclusion. Hence (cf. 8.5.10):

(10) It is understood: “in ordinary sense as x —> .
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()= S <n>(xkf*x“"k YEO(xe")
8= &\k &
so that fxg€O(x*). ¢

8.7.2. COROLLARY. Let abe a real <—2, A the set of all continuous
functions f on IR such that f € O(x*) as x —> and B, the set of all
continuous functions g on R such that there exists a real number >0
(depending on g) satisfying the conditions o+ <—1 and g € O(x?).
Then A, is an algebra under convolution and B, is a module over that
algebra.

PROOF. Applying to the theorem (changing the roles of ¢ and
B), itis readily seen that f+ g exists and belongs to B, whenever fEA
and gEB,_; and that fxg€A whenever f, gEA . So we have only to
prove the associative law: fx(gxh)=(f*g)*h, f, gEA,, hEB,. But
this can be easily seen applying 8.5.7. as we did for 8.6.1. ¢

8.7.3. Remark: The preceding theorem and corollary can be extended
to locally summable functions according to the following criterium
(FUBINI-TONELLI THEOREM): If f, g €L(/R), then

f f(x—t)g(t)dt is convergent almost everywhere in IR and defines
IR

a function h€L(/R). It can still be stated that the preceding integral
is convergent in the mean on /R, so that f*g exists in the distribu-
tional sense. Applying 8.5.11. and taking the Fubini-Tonelli theorem
into account, it is a simple matter to obtain the following generaliza-
tion of 8.7.1.:

8.7.4. THEOREM. Let &, B be two real numbers satisfying the
conditions (i) or (ii) of 8.7.1., &', B' two real numbers such that
o'+ =0 and f, g two locally summable functions such that
FEO(x*e* 1*) and g€ O(xPef 1*1). Then f+ g exists and f+gEO(x%" ),
where y=max(a’, B').
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For the proof it is convenient to consider f and g in the form
f=f+f,,g=g,+g,, with f,, g, €C,, f,, g,€C_, remembering that
fixg,€C,, f,xg,€C_.

From 8.7.4. is easily deduced a corresponding generalization of
8.7.2.

Now, applying the differentiation property, we can derive from the
preceding criteria corresponding rules for distributions. For example,
let us denote by A , for every ar<-2, the set of all distributions of the

p
form fzkz D™F,, where p, n,,..., n, are arbitrary integers and F,
=0
locally summable functions such that FEO(x*), and by Ea the set
q
of all distributions of the form gzz D*G, where q, r,, ..., r, are
=0

arbitrary integers and G, locally summable functions such that
G, E0(x*) with o +<-3 and <3 (B depending on g). Then it is
easily seen that A . 1S an algebra under convolution and Ea a module
over A -

8.7.5. DEFINITION. A distribution f on /R is said to be tempered
(slowly increasing or of polynomial type) if there exists a real «

such that fE€0(x*) (in distributional sense).

An equivalent definition to this is the following: f is tempered if
and only if there exist two integers n, k and a function FEC(/R) such
that f=D"F and FE€ O(x*) in ordinary sense.

We shall denote by & (/R) or simply by & the set of all tempered
distributions. It is readily seen that &J is a vector space closed under D.

8.7.6. DEFINITION. A distribution f on /R is said to be rapidly de-
creasing if and only if for every a<0, f can be represented in the
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P
form fz’ED"ka, where p, n,..., n, are arbitrary integers (n,=0,
=

p=1) and F, continuous functions such that FEO(x*) in ordinary

sense.
We shall denote by  the set of all rapidly decreasing distribu-
tions on /R. From preceding results it is easily deduced:

8.7.7. COROLLARY. & is an algebra under convolution and T a

module over .

A similar result can be obtained concerning the space é of all
distributions of exponential type (that is, of the form f = D"F, where
F is a continuous function on /R such that F € O(e*"!) for some real
o) and the space C@A of all exponentially decreasing distributions
(that is, of the form f =D"F, where F is a continuous function such
that F € O(e**!) for all real number ).

Observe that @*CQC@C@/CéC@.

8.7.8. Convolution in /R". The concept of convolution of distribu-
tions on /R is readily extended to the case of distributions on /R", and
all preceding properties of convolutions can be generalized to this
case: only we are now concerned with derivation operators, transla-
tion operators, etc., corresponding to the different variables.

Theorem 8.6.1. is readily extended to distributions of several
variables. As for theorem 8.6.3. it gives place to new possibilities in
the case of n variables.

Let I' be any convex cone in /R" whose vertex is at the origin
and not reducing to a half space. We shall denote by @r the set of all
distributions on /R" vanishing outside some cone a + I with a €/R".
Then it is easily seen that &, is an algebra under convolution and
Y. a subalbegra of @F; besides, there exists a maximal subspace of
Y distinct from & which is a module over e@r.
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Finally, the criteria given in 8.7. can also be extended to the
case of n variables and combined between them and the preceding
ones, according to the different variables.
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