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111.1 
THEORY OF DISTRIBUTIONS· 

* Este texto tern por base apontamentos coligidos por diversos alunos de Jose SebastHio e 

Silva na sequencia de urn curso que realizou em 1958 na Universidade de Maryland, e que 

posteriormente foram utilizados, e por ele revistos, na Faculdade de Ciencias de Lisboa. 



CHAPTE R I X  

FO U RI E R  TRANS FO R MATI O N .  

9.1. Fourier transformation for tempered distributions on fR. 

Let f be any distribution on fR. If the integral r eiXYf ( y) dy is J/R 
convergent on IR , then the distribution 

9.1. 1 . g(x) = r eixYf ( y) dy JIR 
is called the Fourier transform of f and we write g(x) = �� I Y f( y) ,  or 

simply g = �f. Frequently the Fourier transform of f is also denoted by " 
f .  For simplicity we shall omit the subscript IR in the integral sign 

when no confusion can arise . 

J eixy 
As an example, we have seen that 1 

+ 
y2 dy = ne- l x l  in distribu-

tional sense. Hence, 
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From this we deduce that 

feiXYdy = 21Ct5(x) , 

and so 

9.1 .2. �1 = 21!o. 

On the other hand, it is readily seen that 

9.1.3. 

We now establish some fundamental properties of the Fourier 
transform. 

9.1.4. lf �f and �g exist, then �(A.f + J1g) exists for all A. ,  J1 E C  and 

�(A.f + J1g) = A. (�f ) "+ J1 (�g) . 
PROOF. This is an immediate consequence of the linearity pro­

perty for integrals . • 

9.1 .5. lf �f exists, then c.J(Df ) exists and �(Df ) = - ix (�f ) . 
PROOF. e iXYf ' ( y) = Dy (eiXYf( y» - ixe ixYf( y) . If �f exists , i .e . , if 

eixYf( y) is integrable on IR, then eixYf( y) -.:, 0 on IR as y -.:, 00, and 
therefore 

f eiXY! ' ( y) dy = - ix f eixYf( y) dy . • 

9.1 .6. lf �f exists, then �( Yf ) exists and �( Yf ) = - iD (�f ) . 
PROOF. If :ff exists , then by the differentiation property 

- i Dx f eixy f ( y) dy = f eiXyy f ( y) dy . • 

Combining 9 . 1 .4 . , 9 . 1 .5 .  and 9. 1 .6 . , gives : 



9.1.7. If P is any polynomial, then 

CS(P(D)f ) = P(- ix) (CS f )  
CS(P( y)f ) = P(- iD) (CSf ) . 

1 8 1  

We now establish some existence criteria for Fourier transforms . 

9.1.8. If f is summable on /R, then CS f exists and is a bounded 
continuous function. 

PROOF. Suppose fEL(lR) .  Since l eiXYf( y) I = l f( y) 1 for all 

x, y EIR , the integral f i eiXYf ( y) i dy is dominated by the integral 

f i f( Y) i dY which is convergent and independent of x. Hence, 

f eixYf( y) dy is uniformly convergent on IR , and thus it is convergent 

in the distributional sense and represents a continuous function g(x) 
on IR . Finally, 

i g (x) i s f i f( Y) i dY for all x EIR . • 

We shall denote by Cb the space of all bounded continuous func-
'-" 

tions on /R. Recall that § denotes the space of all tempered distribu-

tions on IR . From 9 . 1 .7 .  and 9. 1 .  8 .  follows :  

'-" '-" 
9.1.9. If fE§ then CSf exists and CSfE§. 

'-" 
PROOF. Suppose f E§. There are m, pE/No and FEC(lR) 

such that f = DmF and FE O(xP ) in the ordinary sense as x -;.  00 . 

F 
Set lP = . Then f = Dm« 1 + ix )p + 2lP) ,  lP EC(/R) , and 

( 1  + ix ) p + 2 
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'--' 
Therefore, by 9 . 1 . 8 . , �f l/J exists and J l/J E Cb C [:g. Hence, by 

'--' 
9 . 1 .7 . , �ff also exists and :ff = (- ix)'1!( 1 +D) p + 2(Jl/J)E!Z1 . •  

We next propose to study the problems of the inversion of ;t. 
We observe that :f transformed 1 into 2 no, 0 into 1 ,  D into mul­

tiplication by - ix ,  and multiplication by x into - iD. Hence, if :-f - 1 
exists , it must transform 0 into 1 /2n., 1 into 0, etc . Thus we might 

expect that � -l is given by the formula: 

9.1 .10. 1 f . f( y) = - e-1XYg (x) dx . 
2n 

We shall temporarily denote by :f * the transformation g ---+f de­

fined by 9 . 1 . 1 0 . It is readily seen that �*  has the required properties 
'-" 

and that � * f exists for all f E �. Moreover, 

'-" '--' 
9.1. 11 .  If f E !?L?  and g = ;}j, then j = ;} *g ;  conversely, if g E � and 

j = ;} *g ,  then g = Jf. '--' 
PROOF. Suppose j E !2J  and set g = :fj, h = �f*g . Then 

and, if we may interchange the order of summation, we find 

h( y) = 
2

1

n: 
f(f e'x ( Y '-Yldx ) f( y ' ) dy ' . 

But 

f e'x ( y '- yldx = 2n:8( y '-y) = 2n:8( y -y' ) 

and by Dirac 's  formula 

h( y) = f 8( y-y ' ) f( y ' ) dy ' = f( y) . 
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'-' 
It is shown analogously that if g EfZJ· and f = J*g ,  then g = Jf. We 
need only justify the interchange of summations, and by 8 .4.4 . it is 

sufficient to show the convergence of the double integral 

9.1.12. f f eix ( Y '-Y)f( y '  )dxdy ' . 

The integral 

9.1.13. 

with f EL , is uniformly convergent on fR since for all x,  y, y '  E fR , 

_ 1 
and l eiXY 'f( y ' ) 1 = 1 f( y ' ) 1 , 

1 + X2 

and the functions ( 1 +X 2 )- 1 and f( y ' ) are summable on fR. Hence, 

by applying the operator 1 -D2 to 9 . 1 . 1 3 . , we see that 9 . 1 . 1 2 .  is con-'-' 
vergent for f EL . The result for f E!if now follows by an argument 

similar to the proof of 9 . 1 .9 .  if we observe that 9 . 1 . 1 0 .  represents '-" 
:f * J and that J*  J (Df ) = Df, J* J (xf ) =xf ,  for all fE.§?) . •  

'-" 
Thus we have proved that J* = J-1 for J restricted to !if. We ask 

if tempered distributions are the only distributions having a Fourier 

transform in the previous sense. 

The answer is affirmative : 

9. 1.14. If the integral f ei XYf( y) dy is convergent on fR , then fEjJj. 

PROOF. Suppose f eiXYf( y) dy is convergent on fR . Then eiXYf( y) 

is of the form ( 1 + iy)- IDXmDyn F(x, y) where F(x, y) E O(yll ) uniformly 

on each bounded interval as y � 00.  Hence, 
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and, since the right member is independent of x, it follows that '-" 
fE O(y2n- l ) and so fE.@" . •  

The preceding results may be summarized as follows : 

9.1.15. THEOREM. J is a one-to-one linear mapping of the space '-" 
.@" onto itself, changing D into multiplication by - ix , multiplication 
by x into - iD, 1 into 21CO, and O into 1 .  J- 1  is given by 9 . 1 . 10 .  

9.2. Fourier transformation and convolution. 

The following theorem is well-known: 

9.2. 1 .  THEOREM. If f and g are summable functions on IR , then J 
transforms the convolution f* g into the usual product of the 
continuous functions Jf and Jg. That is, 

PROOF. By the theorem of Fubini-Tonelli (8 .7 .3 . ) :  if f, gEL, 
then f* g exists and f* gEL . Let j= Jf, g = Jg. Then by 9 . 1 . 8 . ,  

" " f, g E Cb and 

j(x) g (x) = r eiXUf(u) du r eiXVg (v) dv = r eix( u+v )f(u)g(v) dudv. Jm Jm Jm 2 
Now let u + v = y, v = t .  Then u = y - t, the lacobian of the 

transformation is 1 and the transformation maps IR 2 onto IR 2 . There­
fore, 

j(x)g (x) = r eixYf( y - t) g (t) dydt = r eiXY ( r f( y- t) g (t) dt)dY, Jm 2 Jm Jm 
and so jg = J(f* g) . • 
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9.2.2. COROLLARY. Let !, g be distributions on IR of the form 
f= DmF, g = DnG, where F and G are locally summable functions 
satisfying the condition that there exists an integer p such that 
( 1  + ix )PF and ( 1  + ix )-PG are summable on IR . Then J(!* g) = 
= (J! ) (Jg) .  

This is a consequence of  theorem 9 .2 . 1 . and properties 8 .5 . 8 . 
and 8 .5 . 1 0. The corollary can obviously be extended to distributions 
which can be expressed as finite sums of the preceding forms . Recal--.. . 
ling the definition of the space fiJ of all rapidly decreasing distri-
butions, it is easily deduced from 9.2.2. : 

-.. '-' 
9.2.3. COROLLARY. If !EfiJ, gEfiJ, then J(!* g) = (J! ) (Jg) . 

In order to characterize the Fourier transforms of the rapidly de­
creasing distributions, we shall first establish two general criteria: 

9.2.4. THEOREM. If! is a distribution of the form DnF, where F is 
a locally summable function on IR and FE O(�- r )  for r, an integer 
� 2, and if (jJ= J!, then (jJ is a C r- 2 function and (jJ (k) E O(x n ) for k = 0, 
1 ,  . . . , r-2. 

PROOF. Suppose the hypothesis is satisfied and put qJ= J F. Then 
(jJ= (- ix )nqJ and since x kFE O(x-2) for k= O , 1 ,  . . .  , r-2, it follows 
that DkqJ E Cb for k = 0, 1 ,  . . .  , r-2 by 9 . 1 .6 . and 9 . 1 . 8 .  Hence (jJ E C r- 2 

and (jJ (k) E O(x n ) for k = O, 1 ,  . . . , r-2 . •  

9.2.5. THEOREM. If (jJ is a C r  function such that (jJ (r) E O(x n - r ) for 
n, r EINo , and if! = J(jJ, then ! is of the form ! = (1  + D)n+2F for FEC 
such that FE O(X- r ) .  

PROOF. Suppose the hypothesis  i s  satisfied and put 
QJ= ( 1 + ix )-n-2(jJ, F= JqJ. Then != ( 1 + D)n+2F. On the other hand, 
(jJ E O(x n-k ) for k = O, 1 ,  . . . , r ,  and this implies (jJ (r) E o(x - 2 ) .  Hence 
x rFECb and so FE O(X-r )  . •  

9.2.6. DEFINITION. A tempered COO  function on IR is a function 
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ifJ E C r¥J(lR) satisfying the condition that for every r = O , 1 ,  . . . , there 

exists an integer n such that ifJ (r) E O(xn ) in the ordinary sense as 

x �  00 .  We denote by iVl the set of all tempered C r¥J  functions on fR. 
'-' 

It is easily seen that iVl is a vector subspace of � n  C GO ; but ob-'-' 
serve that iVl �§?Jn C GO .  From 9 .2 .4 . and 9 .2 . 5 .  we have : 

9.2.7. COROLLARY. The Fourier transformation J maps the con--... 
volution algebra §?J onto the multiplication algebra iVl . -... 

PROOF. a) Suppose fE2J". This implies that for every r = O, 1 ,  2, 

m 
. . .  , f can be represented in the form f = k D" F. where F. E O(x )- ,-2 

for k =  1 ,  2, . . .  , m. Then if ifJ =;Sf, it is easily seen from 9 .2 .4 . that 

ifJ E c r and ifJ (r) E O(xJJ )  where J1 = max (rJ , . . .  , rk , . . . , t:n ) '  Hence, 

ifJ E iVl  . 
b) Suppose ifJ EiVl . Then for every r= O, 1 , 2 , . . . , there exists n 

such that ifJ (r) E o(xn ) .  Thus if we put f= ;S* ifJ, we conclude from 

9 .2 . 5 .  (which obviously extends to ;S*), that f is of the form 

( 1  + D)n+2F, where F is a continuous function such that FE O(x-r ) .  -... 
Hence, f E §?J . •  

9.3. The Fourier transformation as a continuous mapping. 

It can be seen that the Fourier transformation is not continuous '-" 
with respect to the topology of § restricted to 12J. However, we can '-' 
define a stronger topology on §?J which will make ;S as well as D 

continuous, and extends the usual topologies on function subspaces '-' 
of 12J. In the space Cb of all bounded continuous functions on fR a 

norm is usually defined by I l f l l = sup I f(x) l . Then, 
x E IR 

9.3.1 .  LEMMA. ;S defines a continuous mapping of the normed 
space L into the normed space Cb ' 



PROOF. It is sufficient to observe that if f E L ,  then 

I I 3'f I I  s f l f l = I l f I l L (cf. proof of  9 . 1 . 8 . ) . •  
"-"" 
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We shall try to define the strongest topology on !?lJ making both 

� and D continuous and inducing a topology on Cb (resp . L) weaker 

than the norm topology of Cb (resp . L) . If such a topology exists, then 

�-l  and the mapping f � xf will also be continuous . 

These considerations lead us to the following definition of con­

vergence for sequences : 

"-"" 
9.3.2. DEFINITION. A sequence of distributions { fn }  c!?lJ conver-"-"" 
ges in the tempered sense to a distribution gE !?lJ if there exist an 

integer p, a sequence of functions { Fn } CCb and a function G E Cb 
such that 

(i) fn= DPFn for all n ; 
(ii) g = DPG ; 

(iii) ( 1 +x2 )-P (Fn- G)  converges to 0 uniformly on IR as n � oo.  

It i s  now a simple exercise to verify that this concept of  conver­

gence satisfies all of the preceding conditions . "-"" 
In order to define in !?lJ the strongest topology satisfying the same 

condition, we shall denote by cb-r for k = O, 1 ,  2, . . . , the space of all 

distributions of the form f = Dr( 1 + X 2 Y F with F E Cb '  and we shall 

consider cb-r provided with the image topology of Cb by means of the 

mapping F� D r ( 1  +x2 YF of Cb onto Cb-r. Then it is easily seen (as in 

the case of distributions on a compact interval) that cb-r is a normed 

space and the injection Cb-r� cb-r-l is compact for r =  0, 1 , 2, . . . . On 

00 
the other hand 15 U Cb-r so that jffi- with the inductive limit topology 

r = O  

of the normed spaces cb-r is an (LN*)-space. Then it can be seen that 

this topology is the strongest one satisfying all preceding conditions 

and such that the concept of convergence for sequences agrees with 

that defined directly in 9 .3 .2 .  
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It can also be proved that the substitution x=t/(t2-1) defines a --
one-to-one continuous linear mapping of the locally convex space � 
into the locally convex space.2? [-1, 1]. 

9.4. Fourier transformation and scalar product. 

Sometimes the Fourier transformation is defined by the formula 

9.4.1. 
1 L. g(x) = e,xYf(y)dy, 

v'2n- IR 

instead of 9.1.1. So far as no misunderstanding may arise, we shall 

still write in this case g = 'Sf. The fundamental properties of Fourier 

transformations that we have previously proved are not altered by 

this change of form. But we now have of course, 

The advantage of this new form is that it preserves in many cases 

the hermitic scalar product of two distributions. 

9.4.2. DEFINITION. A rapidly decreasing CO'J function on IR is a 

function l/JECO'J such that l/J(n)EO(x-r) for all n, r=O, 1, 2, ... . 

We shall denote by S the set of all rapidly decreasing functions. --
S is a proper vector subspace of .2? n 0lL. For example, exp (-x 2 ) E S. 

'--' 

It is easily seen that (f, l/J) exists on IR whenever fE!!if and ifJ E S. 

Moreover, if we consider the topology on S defined by the sequence 

of norms 

IlifJll n= sup ( 1 l/J(x)l, (1 +x2)lifJ'(x)I , . . . , (1 +x2)nlifJ(n)(x)I), 
xE1R 

'-' 

it can be proved that !!if is isomorphic to §'. (In the theory of Schwartz, 
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'-" 

the space ffJ is defined to be Sf). On the other hand, it is easily seen 

by applying 9.2.4. and 9.2.5., that j= maps the space S onto itself. 

Thus S is at the same time a multiplication algebra and a convolution 

algebra. 

9.4.3. THEOREM. If fE� and ifJ E S, then (f, ifJ) = (j=f, j=ifJ). 
PROOF. Set g=j=f, If/=j=ifJ. Then, 

(f, ifJ)=L f(X)ifJ(X)dx=L (� f e-iXyg(Y)dY) ifJ(X)dX 
IR IR 21! JIR 

= 1 f e-ixYg(y) ifJ(x)d xdy= f g(y)( 1 L e-iXYifJ(X)dX)dY 
� JIR2 JIR \� IR 

= f g(y) If/(y)dy, 
JIR 

since the double integral exists and exp(-ixy) = exp(ixy) .• 

In the theory of Schwartz, this theorem is true by definition since 

� is defined as the transpose of j= restricted to S : 

(j= f, ifJ) = (f, j=ifJ), for all fE�, ifJ E S. 

Let us now consider the Hilbert space of all square summable 

functions on IR, which we shall denote by j(. We shall put 

1 1  f112= v(f, f) for all fE j(. 

Convergence in this norm is called convergence in the square 
mean. It is well known that every f E j( can be approached in the 

square mean by a sequence of functions {ifJn} CC*OO(lR), so that in par­

ticular S is dense in j-c. On the other hand, it follows from 9.4.3. that 

if ifJ ES, then IlifJ112= IIj=ifJI 12' Consequentely, the Fourier transforma­
tion restricted to S can be extended to a linear isometry of the space 
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J( onto itself. We shall provisionally denote this "mapping by �. In 

particular, if f is a locally summable function with bounded carrier, 

then clearly fE J( and �f= �f. Thus, in general, ?If is given by the 

limit, as a � - 00 and b � + 00 ,  in the square mean of 

1 Ib v'21Z eiXYf(y) dy . 

21! a 

9.4.4. LEMMA. If f, g E X  then L:f(x-y)g(y) dy converges uni-

formly on each compact subset of fR , as n � + 00, to a continuous 

function h such that �h = (�f ) (�g) . 

PROOF. Set fn(x) = f(x)(H(x + 2n) - (H(x- 2n» ? 
gn(x) = g(x) (H(x + n) - H(x - n) . Then fn ' gnEL n J( for all n and 

L:f(x-y)g(y) dY = (fn* g. ) (x) for Ix l < n. Hence, if we put in= Jfn ' 

,.., -- -..., "-' " I'\. 
gn= �gn ' f = �f and g= �f , we have fn gn= �(fn* gn ) EL for all n, 

"'" ___ A """-
and since fn � f ,  g n � g in the square mean, then fn g n � f g in the 

square mean, and therefore f n * g n � h = � -1 (f g )  uniformly on fR. 

Consequently, L> (X-y)g(Y) dY converges uniformly on each COffi-

pact subset of fR to the function h, which is obviously continuous . •  

9.4.5. THEOREM. Every function f E J( is a tempered distribution 

and �f= �f for every f E J( . Moreover, convergence in the square 

mean implies convergence in the distributional sense and if f, g E J(, 

then f * g exists in the distributional sense and is a continuous func­
tion such that �(f* g) = (�f )  (�g) . 
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- ",-, """'" A -- -

PROOF. Set f = Jf ,  fo =  ( 1 +  iX )-,lf and fO = J-l fo ' (observe that 

fo E3CnL) .  Since J-1 ( 1 + ix ) = O- O' , (O- O' ) *fo = ( l - D)fo '  it fol-
--

lows from the lemma that f= ( l -D)fo and hence fE §Z1, since fo E Cb . 

The remainder of the theorem follows from the preceding results . 

9.4.6. COROLLARY. If f, g EJ-( , then ( f, g) = (Jf, Jg) . 

PROOF. It is sufficient to observe that J is an isometric linear 

mapping of the hermitic space J-( onto itself. • 

9.5. Fourier transformations on IRn. 

The Fourier transformation on /Rn may be defined by 

n 
where f is a distribution on IR n, and xy = � xk Y k " If the integral is 

convergent on /Rn, we write g = Jf. 

A distribution f on /R n is said to be tempered if and only 

if there exist two systems p, r E /Non and a function FEC(lR) such 

that f =DPF and FE O(x( '  . . .  x;n ) in the ordinary sense. We write 
-- --

fE §Z1(1R n ) or simply f E �. 
All preceding properties of the Fourier transformation can be 

extended to the present case with the obvious modifications concern­

ing the existence of n derivation operators and n coordinate functions 
" " 

X I " ' "  xn ' Thus, 

J(Dk f )  = (- ixk)(Jf ) , 

J(xk f )  = (- iDk)(J f) , 
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--

for all fE � and k= 1 ,  . . .  , n .  Moreover, in the inversion formula the 

1 1 
coefficient - must be replaced by . 

21f (21f)n 
--

Observe that if fE @(IRn)  we can define 

the Fourier transform of f with respect to Xk • (It is easily proved that 

this partial integral is convergent on J] IRx) · Then we write gk= 'Jkf, 
J � 

and it is easily seen that 

et = 'J . . . et J 1 I n • 
--

For the existence of 'Jkf it is not necessary that fE @(lRn) .  It is 

sufficient that there exist an integer p, such that 

!EO(Xf ) on J] IRxj as Xk� OO .  
J � 
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