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111.1 
THEORY OF DISTRIBUTIONS· 

* Este texto tern por base apontamentos coligidos por diversos alunos de Jose SebastHio e 

Silva na sequencia de urn curso que realizou em 1958 na Universidade de Maryland, e que 

posteriormente foram utilizados, e por ele revistos, na Faculdade de Ciencias de Lisboa. 



CHAPTER 11 

DISTRIBUTIONS O F  ONE VARI ABLE: 

FUN DAME NTAL CO NCE PTS. 

2.1. Terminology and notation 

We shall denote by IR the field of real numbers and by C the field 
of complex numbers. If a, b E IR, with a < b, then 

[a, b], la, b], [a, br, la, b[ 

denote the intervals with extreme points a, b defined respectively by 
the conditions 

a s; x s; b ,  a < x s; b, a s; x < b, a < x < b 

They are respectively closed, closed on the right, closed on the 

left, and open. All of them are bounded. 

An interval (or more generally any set of points of IR) is said to 
be compact if it is closed and bounded. By extension of language, 
any set that reduces to a single point a E IR is called a degenerate 

interval that is the interval [a, a]. However, by an interval we shall 
always mean a non-degenerate interval, unless the contrary is ex
plicity stated. 

On the other hand, the symbols [a, + 00 [ ' la, + 00[ ' ] - 00, a] ,  
] - 00, a[ denote the unbounded intervals defined respectively by 
x � a, x > a, x s; a, x < a. 
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The first two are bounded on the left and the last two are bound
ed on the right. The first is closed, the second is open, etc. 

Finally the unbounded interval] - 00, + 00 [ is the set IR itself; it is 
both open and closed (in IR). 

Let I be an interval in IR. We denote by C(/) - or by C if there is 
no danger of mistake - the set of all complex -valued functions f(x) 
of the real variable x which are defined and continuous on I. More 
generally, for any integer n > 0, we denote by cn(/) - or simply Cn -
the subset of C (I) formed by those functions f, which have a 
derivative, f(n), of order n continuous on I; in particular Co= C. The 
elements of cn(l) are said to be Cn functions on I. 

The term "function" will mean "complex - valued function" 
wherever the range is not specified. 

Instead of f(n) we shall often write D nf. This notation puts in 
evidence the derivation operator, D, which assigns to each function 
f E C 1 the function Df = ff E C .  So D n is the nth power of D. 

On the other hand, the symbol � denotes an integration operator 
defined by the formula: 

;sf (x) = ff(�) d�, for all fEe 
where c is an arbitrary fixed point in I. Then � is a mapping of the 
set C into C 1 C C such that 

D�f = f, for all fEC .  
This � is a right-inverse of D (but not a left-inverse) . More ge

nerally: 

2.1.1 . Dn�nf = f, for all fEC, n = 0,1, . . .  

2.2. Axiomatic introduction of distributions. (1) 

Let I be any interval in IR; the system of all distributions on I can 
be described by the following system of fundamental properties: 

(1) The word "distributions" is used here with a meaning equivalent to that of "distributions of 

finite order" according to L. Schwartz. We shall further introduce the concept of "global 

distribution" which is equivalent to that of "distribution" in the sense of Schwartz. 
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AXIOM 1. Every function which is defined and continuous on I 
is a distribution on l. 

AXIOM 2. To every distribution f on I there corresponds one 
and only one distribution on I, which is called the "derivative of f" 
and denoted by D f, in such a way that, if f is a C 1 junction, then D f 
is the derivative of f in the ordinary sense. 

DEFINITION: The derivative of order n of a distribution f, 
which is denoted by Dnf, is defined as follows :  

DOf=f , Dnf=D(Dn-lf) ,  for n= 1 , 2, . . .  

AXIOM 3. To every distribution f on I there exists at least one 
integer n � 0 and one function F, continuous on I, such that f = D nF . 

AXIOM 4. If n is an integer, n � 0, and f, g are two continuous 
f£!,nctions on I, then we have D n f = D ng if and only if f - g is a poly
nomial junction of degree < n. 

We denote by INo the set of all integers n � 0 and by ClPn' for each 
n E INo, the set of all polynomial functions of degree < n (restricted 
to I). Our immediate purpose is to prove that the preceding axioms 
are : 

10 consistent; i .e .  there exists at least one structure satisfying the 
axioms (a model) . 

20 categorical; i .e .  two such models are necessarily isomorphic . 
This will imply that any statement about distributions on I which is 
not false is a consequence of the axioms, and eventually of some 
supplementary definitions that have been introduced in order to 
simplify the language. 

We shall begin with the proof of categoricalness because it leads 
to a natural proof of consistency. 

PROOF of categoricalness - Suppose that there is a model M 
satisfying the axioms, i .e .  a set of objects f, g, . . .  , and an operator D 
such that, if we call these objects the distributions on I and Df, Dg, 
. . .  , the derivatives of f, g, . . . , then the axioms are satisfied. The 
axioms 1 and 2 along with definition 1 imply that, for any couple 
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(n, F), where n E1No and FE C, there exists one and only one dis
tribution f=DnF (element of M).(2) Conversely, according to axiom 
3, for any f E M there exists at least one couple (n, F) with n E 1No ' 
FE C, such that f=DnF. 

However there exists more than one couple (n, F) satisfying this 
condition. Let (m, G) be any couple such that: 

2.2.1.  

and let k be any integer such that k � m, n. By axioms 1 and 2, defi
nition 1 and property 2.2.1., we have: 

hence 

Dk (�k-n F)=Dk(�k-m G) 

and consequently by axiom 4:  

2.2.2. �k-n F _�k-m G E CJPk. 

Conversely, axiom 4 shows that 2.2.2. implies 2.2.1. These two 
conditions are therefore equivalent. (For example, if m � n, we can 
choose k= m, so that condition 2.2.1. is satisfied by all functions G 

of the form G = �m-n F + P, where PE CJP m). 
Now let us denote by [n, F] the class of all couples (m, G) �atis

fying 2.2.2., i .e . ,  such that DmG=DnF, and let us denote by C the 
set of classes [n, F], with arbitrary n EINo' FE C. Then the corres
pondance: 

[n, F] --:. DnF 
"-

is obviously a one-to-one mapping of C onto M such that: 

2.2.3. 

(2) Remember that we write C instead of C(l) for the sake of simplicity. 
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In particular, the correspondence: 

[0, F] � F 

.... 
is a one-to-one mapping of a subset C* of C onto C. Therefore, if we 

define : 

2.2.4. D [n, F]· [n + 1 ,  F] 

and we identify(3) each element [0, F] of C* with the function F itself 

by puting F= [0, F] = [ 1 , �F] = . . . , then C becomes a second model, 

consistent with the axioms, isomorphic to M according to 2.2. 3 .  and 

2.2 .4. .... 
Thus any model M satisfying the axioms is isomorphic to C and 

therefore, any two models M and M' are isomorphic (remember that .... 
the construction of C, based on 2.2 .2 . , is independent of the choice 

of M) .• 

PROOF of consistency - We have just seen that if there is a .... 
model M of the system of axioms then the set C, described above, 

exists too and is also a model. We shall now prove, without assuming .... 
the existence of any previous model M, that the set C actually exists 

and gives us a model of the system of axioms. 

Let us consider the set INo x C of all couples (n, F), where n E/No 

and FE C. Given two such couples (n, F) and (rn, G) we shall write: 

(n, F) .... (rn, G) 

if and only if there exists an integer k > rn, n, such that: 

2.2.5. �k-n F - �k-m G E rzp k • 

(3) By identifying [0, F] with F, we mean in reality that the symbol "[0, F]" and its equiva
lents "[1, �F]", [2, �2F], ... , will denote from now the function F, i�stead of the class of 
couples [0, F] equivalent to (0, F). Thus the meaning of the symbol C is also changed. 
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It is easily seen that the relation " ..... " just defined is reflexive and 
symmetrical. We now prove that it is transitive. Observe first that if 
there exists an integer k � m, n satisfying 2.2.5 . , so does any other 
integer r, such that r?! m, n. In fact we find that : 

;sr-n F - ;sr-m G E rzp r 

by applying to both members of 2.2 .5 . the operator D k-r or ;sr-k ac
cording to whether k?! r or k < r. So suppose: 

(n, F) ..... (m, G) and (m, G ) ..... (p, H). 

Then, if we choose r � m, n, p, we have: 

;sr-n F - ;sr-m G E rzp ;sr-m G- ;sr-p HE rzp r , r ' 

and hence, by addition: 

;sr-n F _ ;sr-p HE rzpr ' that is (n, F) ..... (p, H). 

So the relation ..... is an equivalence relation and, as such, it 
determines a partition of the set 1No x C off all couples (n, F) into 
equivalence classes. For each couple (n, F), we shall denote by 
rn, F] the class of �l couples which are equivalent to (n, F) and 
we shall denote by C the set of all of these classes (the "quotient" 

of 1No x C by ..... ) . 
The correspondence [0, F] � F being a one-to-one mapping of ..... 

a subset C* of C onto C, we can identify each .Element [0, F] of C* 
with F E C. Now, let us call the elements of C distributions on I . ..... 
So Axiom 1 is satisfied by C. 

Moreover, we shall call [n+ 1 ,  F] the derivative of rn, F] and we 
shall write: 

D [n, F] = [n + 1 ,  F] . 

According to this definition, there is only one derivative for ..... 
each [n, F] E C. Indeed, suppose [n, F] = [m, G]; this means that 
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(n, F) ..... (m, G ), i .e .  �k-nF - �k-m G E � k for any k � m, n ;  hence 

�(k+ I)-(n+ I) F _ �(k+ I)-(m+ I) G E � k+1 , 

that is [n + 1 ,  F] = [m + 1, G] which means that D [n, F ] =D [m, G ] .  
Moreover if f E  Cl, then D [0, f] = [1 , f] = [0, f'] = f', since 

f - � f' E � 1 • So axiom 2 is satisfied. 
On the other hand we have : 

.... 
[n, F] = D [n - 1 ,  F] = . . .  = Dn [0, F ] = DnF for every [n, F]  EC. 

So axiom 3 is also satisfied. 
Finally, if Dnf = Dng , with f, g E C, then [n, f ] = [n, g], that is 

�k-n f - �k-n g E � k , for any k � n. Choosing k = n, we see that axiom 
4 is also satisfied, as we have Dn f = Dng if and only if f - g E �

n 
.• .... 

Conclusion: We have just proved that the set C gives us a model 
of the preceding system of axioms . We could conceive many other 
such models , but this would have no essential interest since we have .... 
p!oved that such models are necessarily isomorphic to C. The model 
C itself, after having afforded a simple proof of consistency of axio
matic system, will have no further interest. 

From now on, all that matters will be the rules of calculus of 

distributions: that is, the axioms 1 - 4 and the definitions that will 
be convenient to add to them, as well as the propositions implied by 
this system of axioms and definitions. 

In reasoning as well as in calculation, the distributions will be 
denoted by the notation "D n f" or by any other that be convenient. 
But it will no longer be necessary to think of a distribution as a class 
of couples (n, f). Observe that this situation is quite similar to the one 
connected with the successive extensions of the number concept. 

2.3. Rank of a distribution and further conventions 

For each integer n � ° we shall denote by C
n
(I) - or by C

n
, when 

there will be no danger of mistake - the set of all distributions f on 
I of the form: 
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f = Dn F, where F E  C(J). 

Observe that Co = C C Cl C C2 C ... . 
On the other hand, we shall denote by �(J) - or simply !?lJ - the 

set of all distributions on J. Thus !?lJ is the union of all the sets C/J): 

00 
!?lJ(J) = U Cn(J) (C o  = C) , 

n=O 

and accordingly we may use the alternative notation Coo for !?lJ. 

2.3.1 .  We say that a distribution f is of rank n if and only if (iff) n 
is the least integer such that f E Cn' 

For example, consider the Dirac 8-distribution which can be de
fined as follows :  

2.3.2. 8 = D
2 J, with J = {O, for x < 0 . 

x, for x � 0 

So, 8 E C2• Suppose there exist a continuous function F, such 
that 8 =DF. Then DF=D

2
J, that is J = �F + P, with PE ClP'2' Hence 

DJ = F + P'. But this is impossible as F + P' is continuous and J has 
no continuous derivative (on IR). Consequently the rank of 8 is 2. 

It follows from this that '8(n) is of rank n + 2, for n = 1 ,  2, . . . . 

2.3.3. An interval J is said to be the domain of a distribution f iff f 
is a distribution on J ; i .e .  f E !?lJ(J) .  We also say that f is de

fined on J. 

2.4. Addition of distributions 

The sum f + g, of two distributions f, g, on the same interval J, 
is to be defined so as to guarantee the following properties : 

Al. If f, g E C(l) , then f + g is the sum of the functions in the ordinary 
" 

sen..se. 

A2. Iff, g E!ilJ(l), then f+gE!!»(J) and D(f+g) =Df+Dg. 
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Suppose : 

According to the axioms (2.2), it is possible to represent f and g 
as derivatives of the same order of two continuous functions ; indeed, 
taking r � m, n, we have: 

Now, conditions Al and A2 imply 

So, 

2.4.3. f + g = DnF + DmG = D r (�r-n F + �r-m G) . 

In this way we assign to each couple (f, g) of distributions on 
/, at least one distribution on /, which is denoted by f + g. We shall 
next prove that there is only one distribution f + g ,  for each couple 
(f, g) ; i .e . , we shall prove the sum f + g does not dep�nd on the 
representation 2.4 . 1 .  of f and g. Indeed, consider another represen
tation : 

f=DVlP, g=DJ.ltp, with v, J.1 EINo' fP, tpE C. 

Then, taking p � v, J.1 we get : 

Choose now k;;:: r, p. Then : 

Dr(F+G)=Dk(F*+G*), with F*=�k-nF, G*=�k-m G. 

DP(& +Vf) =Dk(fP*+ tp*), with lP*=�k-vlP, tp*=�k-J.ltp . 

But DkF*=Dk(�k-nF) =DnF = f and DkfP*=Dk(�k-VfP) =DVfP= f. 

Then Dk F* = Dk lP* and F* - fP* E �k . 
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Analogously DkG* = Dk tp *  and G*- tp *  E CfPk; hence 

(F* + G*) - (l/J*  + tp*) E CfPk' which means : 

Thus, we have proved that the sum f + g is uniquely defined for 
each couple ( f, g) . Besides, it is obvious that conditions Al and A2 
are actually satisfied by addition defined according to 2.4.3 . .  Hence 
addition in �(J) can be defined either implicity by the properties Al 
and A2 or explicity by formula 2.4.3 . .  Moreover, this operation is :  

I. Associative: ( f + g) + h = f + ( g + h), Vf, g, h E!!2J. 

11. Commutative: f + g = g + f, Vf, g E!!2J. 

Ill. Reversible: for any two distributions f, g on J, there exists 
one and only one distribution ; on J, such that f + ; = g .  

To prove these properties, it i s  sufficient to represent f, g ,  h as 
derivatives of the same order of continuous functions and to apply 
the corresponding properties of addition in C. 

The preceding properties I, 11, III along with the existence and 
uniqueness of f + g in!!2J, for all f, g E!!2J, can be expressed shortly 
by saying: 

2.4.4. !!2J is a commutative group with respect to addition. 

2.5. Multiplication by complex numbers 

The product, af, of a complex number a by a distribution f is to 
be defined so as to guarantee the two following properties : 

P1.·- Iff E C(J), then af is the product of a by f in �he ordinary 
sense . 

P2. - If f E !iJ(J), then af E !!2J(J) and D (af ) = a(Df ) .  

Suppose f = Dn F, with n E 1No ' F E  C. Then PI and P2 imply the 
explicit definition: 
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Thus to each couple (a, f), where aE C and f E C(/), there is 
assigned at least one distribution on I, which is denoted by af. It is 
easily seen that the product af is unique for each couple (a, f); i .e . , 
does not depend on the representation off. Moreover, it is quit trivial 
to prove that if f, g E 0(/) and a, f3 E C, then: 

I. a(f+g)=af+ag } 
f3 f3 

(distributive laws) 11. (a+ )f=af+ f 
. 

Ill. (af3)f = a(f3f) (associative law) 

IV.1·f=f· 

We have seen (2.4.4 . )  that 0(/) is a module, i .e . ,  a commutative 
group with respect to addition. As usual, this fact along with proper
ties I-IV, can be expressed by saying : 

2.5.1. 0(/) is a vector space over C (or a complex vector space). 

On the other hand, the conjunction of the properties D(f + g) = 
=Df +Dg and D(af) = aDf is equivalent to the property : 

D(af+f3g) = aDf + f3Dg, Va, f3EC; f, gE0(/) 

and it may be expressed by saying : 

2.5.2. The operator D is a linear mapping of the space !iJ(/) into 
itself 

We shall further be concerned with the more delicate problem of 
defining the product of two distributions . 

2.6. Translation operators 

If f E C (I) , h E IR, then rh f is the function defined as follows :  

2.6.1 .  rh f (x) = f (x- h) 
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f Z- / .---

/i� 'thf 
h I I 
I 

I+h 

The graph of rh f is that of f translated by an amplitude h. In par
ticular, the domain of 'rh f is the interval J = 1+ h. If h ;z! 0, we have I J 
if and only if I = fR. 

Thus rh denotes a one-to-one mapping of C(/) onto C( J), which 
is natural to call a translation operator. Accordingly, we shall call 
'rh f the h-translate of f. 

Taking 2.6.1. into account it is readily seen that 

rh (Df) = D( rh f) if f E C l (/) 

The extension of the operator rh to distributions is defined so as 
to generalize this property. So we set by definition: 

It is obvious that this formula actually defines a one-to-one map
ping rh of §J(/) onto §J(J ) whose inverse is 'r_h• Besides, it is easily 
seen that for any hE fR, this operation is linear and interchangeable 
with D, that is: 
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The distribution Th 8, which we shall also denote by 8(h) is the 
Dirac distribution at the point h. 

Remarks about notation. If f is a function and x a point of its 
domain, the symbol f (x) denotes the value that f assumes at this point. 
When the point x is not specified, we are dealing with a variable and 
the expression "function f (x)" is generally used instead of "function 
f". Now, it must be remembered that this is an abuse of language 
which is certainly convenient in many situations, but which can lead 
to error in other cases , especially in functional analysis. In these 
cases it is advisable to adopt the convention consisting on writing the 
accent" over the variable which is then said to be an apparent or 
mute variable. So the symbols f, f(x), f(t), . .. , become equivalent. 
For example, the expression 3x2 + x is only a variable dependent on 
x; meanwhile the expression 3x2+x denote.s properly the function f 
defined by f (x) = 3x2 + x, for all x E IR. 

These conventions can be extended to distributions . If f is a dis
tribution on I and x a point of I, then the symbol f(x) has generally 
no meaning for there is in general no value of a distribution at a 
point, as we shall see. But it is often convenient to use the symbol 
f(x) for denoting the distribution f. Accordingly, the distribution Thf 
may be suggestively denoted by f(x- h) . In particular, we may write 
8(x- a) for Ta 8 and more generally 

8(n)(x - a) instead of Ta 8(n). 

Frequently, we shall write f(x) instead of f(x) or f. It must be 
remembered however that this is an abuse of writing, which we can 
admit for the sake of simplicity, whenever no misunderstanding is 
possible . 

2.7. Restrictions operators 

If fEe (I), the restriction of f to an interval 1 C I is the function 
f* whose domain is 1 and such that: 

f*(x)=f(x), for all x E l. 
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We denote by PJ f the function f* , which is the restriction of 
f to J. 

It is obvious that the symbol PJ denotes a linear mapping of C (I) 
into C(J), interchangeable with D, that is PJ(Df) =D(PJf), for all 
f E C [(I) .  It is then natural to put by definition: 

Thus the operator PJ becomes a linear mapping of !?lJ(/) into 
!?lJ(J) such that: 

2.7.2. 

Observe, that the restriction operator PJ may reduce the rank 
of a distribution. For example, the distribution sin x - 3 8 + 8'( x - 3) 
which is of rank 3 on IR (cf. 2 .3) , becomes of rank 2 by restriction 
to ] -00, 3 [ and of rank 0 by restriction to ] -00, 0 [. 

Another property of the restriction operators , which is easily 
shown, is the following : 

2.7.3. If I, 1, K are three intervals such that I � J � K, then 

PKf=PK(PJf) , Vf E�(/). 

2.8. Collecting principle. Global distributions (or distributions 

in the sense of Schwartz) 

Let I[ and 12 be any two intervals in IR (distinct or coincident) . 
Then: 

2.8.1 .  DEFINITION. Two distributions, f E �(/[) and g E �(/2) 
are said to be equal on an interval Je/[ n 12 iff PJ f = PJ g. Then we 
write f=g on J. 

2.8.2. LEMMA. Let 1[ , 12 , be two open intersecting intervals in 
IR and fp f 2' two distributions on I[ and 12 respectively, such that 
f [ = f 2 on I[ n 12 . Then there exists one and only one distribution f 
on the interval 11 U 12 such that f = f 1 on 11 and f = f 2 on 12 . 
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PROOF. Suppose f, =D nF, and f2 = DnF2 with F]E C(ll ) and 
F2 E C(I2). Then F] -F2 equals a polynomial P of degree < n  on 
I] n 12, Therefore if we put F = F, on 1 1 and F = F2 + P on 12 , we de
fine a continuous function F on I) U 12 , and the distribution f = D nF 
satisfies the condition of the lemma. Conversely, a distribution 
g = DqG satisfying this condition coincides necessarily with f, as is 
readily seen .• 

2.8.3. Collecting principle (1st form). Let I I , . .. , I n be n open 
intervals whose union is again an interval I, and let fl"'" fn be 
n distributions on /1 "", In respectively, satisfying the conditions 
fj = fk, on � n Ik , whenever � n Ik is not empty ( j, k = 1, 2, . . .  , n) . 
Then there exists one and only one distribution f on I such that f = fj 
on � for j = 1, . . . , n. 

PROOF. We can suppose the intervals I I , ... , In ordered in such 
a way that if j < k, then the left extremity of Ij precedes the left 
extremity of Ik or, if these extremities are coincident, the right 
extremity of � precedes that of Ik• Then, the successive unions 
I) U 12, (I) U 12) U 13, • • •  are again intervals , and we can achieve the 
proof by repeated application of the lemma along with 2.7.3 .• 

2.8.4. Remark. The conclusion is no longer true, if we consider 
an infinite system of distributions f l' f 2 , • • •  on intervals 11, 12"" 
instead of a finite system. For example, take : In = ] - n, n [ and 
fn=Pl [O(x)+o'(x-1)+···+O(n-I)(x-n+1)] for n = 1, 2, . . . . Since n 
the rank of fn is n + 1 for each n, there is no bound for the ranks of 
f l' f 2' . .• , and, therefore, there is no distribution f on IR, such that 
f = f n on In' for every n . 

But we can extend the collecting principle in the following way: 

2.8.5. Collecting principle (2nd form). Let A be any set of objects. 
Suppose that to each a E A is assigned an open interval I a and a 
distribution fa on I a' in such a way that: 

(i) the union of all these intervals is again an interval I; 

(ii) whenever two of these intervals, l a  and l p, intersect, then 
fa= fp on l a  nIp ; 
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(iii) there exists an integer r such that the rank of fa is s r for 
every a E A, 

Then, there exists one and only one distribution f on I such that 
f=faonla for every a EA, 

PROOF, The open interval I can be expressed as the union of a 
sequence of compact intervals KI C K2 C ' , . , Now, according to the 
Heine-Borel principle, there exists for each n a finite system of open 
intervals 1nl, ... , i:n, belonging to the given system (la) and covering 
K n that is such that: 

Besides , these intervals may be chosen so that in C in+l' for any n. 
Then I is again the union of the increasing sequence of intervals in . 

Let g: be the distribution of the system (fa)' assigned to i: , for 
every n=l , 2, . . . , and k= 1 ,  ... , Pn' According to 2.8 .3 . , there is one 
and only one distribution gn on in such that gn=&kon �kfor any n 
and k. On the other hand, by the hypothesis (iii) , there exists neces
sarily for each n a function Gn E C(in), such that gn=DYGn . Since 
g n+l = gn on in for every n, it is easily seen that we can choose the 
functions Gn so that Gn +l = Gn on in for each n. But then it is obvious 
that there exists one and only one function G E C(l) such that G = G n 
on in for n = 1, . . . . Consequently, if there exists a distribution f on I 
such that f = fa on la for every a E A, then necessarily f = gn on in 
for n= 1 , 2, . . .  and therefore f=DYG. 

Conversely, the distribution g = DYG satisfies the condition g = fa 
on I a for every a E A. In fact, if we denote by g a the restriction of g 
to I a and if we put inko; = �k n la' whenever this intersection is not 
empty, then la is the union of all �k and we have g a = fa on each 0; 
interval �:. Hence, by the uniqueness property just proved, g a = fa; 
i.e . g = fa on la (for every a). So the proof is concluded .• 

Condition (iii) is obviously necessary in theorem 2. 8 .5 . How
ever, the preceding example (2 . 8 .4 . )  suggests a generalization of the 
concept of distribution. First of all we shall consider more generally 
open sets in IR instead of open intervals. Remember that every open 
set Q in IR, is the union of a finite or countable system of mutually 
disjoint open intervals (the so-called components of Q). For the 
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same purpose, we could consider still more generally any set which 
results from any open set Q by adding one or more boundary points 
to Q. But this case reduces to the preceding one, as we shall see. 

2.8.6. DEFINITION. Let Q be any open set in IR and let us suppose 
that to each compact interval le Q is assigned a distribution f/ on I 
in such a way that for any two compact intervals 11 and 12 contained 
in Q, we have fll = f/2 on /1 n Iv whenever /1 n 12 is not empty nei
ther degenerate. The system (f/) of distributions defined in this way 
is called a global distribution on Q, and Q is called the domain of 
f. The distributions f/ are the components of f· 

We shall denote by � ( Q) the set of all global distributions on Q. 
Given two elements , f = (fJ and g = (g/), of � ( Q), and a com

plex number a, we shall define f + g (sum of f and g), af (product 

of a by f) and Df (derivative of f), by the formulas : 

f+g=(f/ +g/), af=(af/), Df=(Df/)· 

It is immediately seen that � ( Q) is a complex vector space with 
respect to the first two operations and that D is a linear mapping of 
� ( Q) into itself 

Observe now that to each continuous function f �n Q corre
sponds the global distribution (f), where f/ is the restriction of f to 
I and that this correspondence i� a one-to-one linear mapping of 
C( Q) onto a subspace C( Q) of � ( Q) such that if f E Cl ( Q), then 
D(f/) corresponds to the derivative of f in the usual sense. Then, we 
can identify every function f E C(Q) with the corresponding element 
(f/) of�( Q) so that C ( Q) becomes a subs pace of�( Q) . 

In particular, Q may be an interval . Then taking 2 .8 . 5 .  into ac
count, we see that the space �( Q) of all distributions on Q, can be 
identified, in the same way, with a subspace of � ( Q) .  

In the general case, we  shall call any element f of � ( Q) of the 
form f = D nF, with n E/No and F E  C( Q), a distribution on Q. It is 
easily seen that the set of all distributions on Q, which we shall 
denote by �( Q), is then a vector subspace of �( Q) .  

Distributions may be  called global distributions of finite rank. 

According, a global distribution which is not distribution is said to 
be of infinite rank. 
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The concept of restriction, as well as def. 2.8 . 1. ,  can be extended, 
in a natural way, to global distributions .  Then we can also extend to 
global distributions the Collecting Principle 2 . 8 . 5 . , considering more 
generally open sets instead of open intervals and suppressing condi
tion (iii) . 

It should be observed that there exists actually global distribu
tions of infinite rank. An example is suggested in 2 .8 .4 .  

2.9. Carrier of distribution 

Global distributions of infinite rank have rather a theoretical in
terest mainly connected with the functional theory of L. Schwartz . 
So we shall hence forth confine our discussion to distributions . 

We say that a distribution f on a open set Q in IR is null on a 

open set 0 C Q iff f equals the zero function on o. 

2.9.1. LEMMA. The union of all open sets 0 where a distribution is 
null, is again an open set Qo where f is null (hence the greatest open 
set where f is null). 

PROOF. Let 10 be any component of Qo . Then 10 is an open in
terval which is the union of a system (la) of open intervals where f 
is null . But the zero function is also null on all intervals of the sys
tem. Hence, by the collecting principle (2. 8 .5 .) , f is equal to the zero 
function on 10 , and since 10 is any component of Qo ' it follows that f 
is null on Qo .• 

2.9.2. DEFINITION. Let f be a distribution on an open set Q in IR 
and let Qo ' be the largest open set where f is null . Then the set Q\Qo 
(complement of Qo in Q) is called the carrier of f. 

According to this definition, the carrier of f is always closed re
latively to Q. In particular, if Q = IR, the carrier of f is a closed set. 

Examples : I - If f is a continuous function on IR, the carrier 
of f is the closure of the set of all points x, such that f(x) � o. Thus 
the function f, such that f(x)=sin x when sinx > 0 and f(x) = 0 when 
sin x :s 0, is a continuous function on IR whose carrier is the set of all 
points x such that sin x � O. 
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11  - The carrier of the distribution 3 8  + 8'(  x + 1 ) reduces to the 
isolated points 0 and - 1 . 

2.9.3. Proposition. The carrier of a distribution f on IR reduces to a 
single point a if and only if f is a linear combination of derivatives of 

m 
8(x- a) , J� cj 8(J1(x- a), where m is an arbitrary integer > 0 and 

co '  . . .  , Cm are arbitrary complex constants which do not all vanish 
together. 

PROOF. This condition is obviously sufficient. Let us suppose, 
conversely, that f is a distribution on IR whose carrier reduces to one 
point a. Then f is of the form f = D n F with F E  C(fR) and, since f = 0 
on the set of all points x � a, F is represented by two polynomials,  PI 
and P 2 '  of degree < n for x < a and for x >  a respectively. Hence, 
putting G = F  - PI ' P = P2 - PI , we have f = D ItG, with G(x) = P(x) for 
x >  a and G(x) = 0 for x < a .  Since F is continuous on IR, so is G and 
hence G (a) = P (a) = O .  Consequently, P must have the form: 

Put now, for k =  0, 1 ,  . . . 

X k = 
{x k, if x > 0 

+ 0 , if x < O  

n - l  
Then we have G(x) = k a

k
(x - a)!  and k! 8(x) = D k + lX! for k= 1 , 2, 

. . . . Consequently, putting n - 2 = m, (k + 1 )!ak + 1  = cm_ k ' we obtain 

m 
/ = D nG = � ck8(k) (x- a) . • 
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