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111.1 
THEORY OF DISTRIBUTIONS· 

* Este texto tern por base apontamentos coligidos por diversos alunos de Jose SebastHio e 

Silva na sequencia de urn curso que realizou em 1958 na Universidade de Maryland, e que 

posteriormente foram utilizados, e por ele revistos, na Faculdade de Ciencias de Lisboa. 



C HAPTE R I I I  

S P ECIAL TYP ES O F  DISTRI B UTIONS 

3.1. Locally summable functions 

A function f is said to be locally surnmable on an open set Q in 
IR iff f is summable on every compact interval contained in Q. For 
example, the function x-1 (x-I )-1I3 is locally surnmable on the interval 
]0,  + 00 [ or even on the set Q of all points x � 0 ;  but it is not ' locally 
summable on IR, for it is not surnmable on any interval containing O. 
On the contrary, log I x I is locally summable (thought not summable) 
on lR. 

Instead of an open set, we may consider more generally any set 
which results from an open set by adding to it one or more of its 
boundary points. 

If f is a function locally surnmable on an interval I, we shall call 
a primitive of f any function F of the form : 

VxE I 

where c is an arbitrary point of I and K an arbitrary complex number. 
From the properties of the Lebesgue integral, the following theo

rem is deduced : 
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3.1.1. If F is a primitive of a locally summable function f on I, then 
F is continuous on I and has a derivative a. e. (almost everywhere) in 
the ordinary sense such that: F' (x) = f(x) , almost everywhere on I. 

It should be observed that the converse of theorem 3 . 1 . 1 .  is not 
true. There are examples of continuous functions which have a deri
vative a.e .  in the ordinary sense on an interval I and which are primi
tives of no locally summable functions on I. 

The functions which are primitives of locally summable functions 
are said to be absolutely continuous. A direct characterization of such 
functions was given by Vitali . 

Theorem 3 . 1 . 1 .  suggests calling the function f a derivative of its 
primitive F. But then F would have, of course, infinitely many deri
vatives (of 1 st order) . 

3.1.2. Two locally summable functions fl and f2 on I have the same 
primitive F if and only if fl (x) = f/x) almost everywhere on I. 

In such a case the functions are said to be equivalent and it is 
written fl "-' f2 (on I). 

It is readily seen that this is actually an equivalence relation. The 
class of all functions which are equivalent, in this sense, to a given 
function f, locally summable on I, will be denoted by [ f ] .  That being 
so, if F is any primitive of f, it will be natural to call the class [ f] 
the derivative of F and to write : 

DF= [ f ] .  

So the derivative of F is uniquely defined as one class of func
tions instead of a single function. On the other hand it is natural to 
define the sum of two such classes [ f ] and [ g] and the product of [ f] 
by a complex number a according to the formulas : 

[ f] + [ g] = [ f + g] , a [f] = [af] 

It is readily seen that with these definitions the set of all such 
classes [ f ] becomes a complex vector space. Finally, if f is a con
tinuous function on I, it is natural to identify [ f] with f, so that C(/ ) 
becomes a subspace of the preceding vector space. 
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However, it will be troublesome to have to speak throughout of 
classes of functions. To avoid this we shall use a simple device.  

Let f be any locally summable function on I and let us place : 

� d LX f (x) = - f(�) d� (with cE / ) .  
dx c 

'"'-' 

Then f is defined only at the points x of I for which the preced-
ing derivative exists in the ordinary sense. On the other hand, we 
have, of course : 

f ,..., f and f = f . 

'"'-' 

We shall call the operation f � f ,  standardization, and the 
� functions f such that f = f, standard functions . For example, the 

Heaviside function : { I , for x �  ° 
H(x) = 

0, for x < O 

is not a standard function . By standardization of H we obtain the 
standardized Heaviside function: '"'-' { 1 ,  for x >  ° 

H(x) = 
0, for x < O  

which is not defined at x = O. 
In particular, all continuous functions are standard functions . It is 

natural to replace any equivalence class [f ]  by the standard function 
'"'-' 

f belonging to this class .  
From now on, when we speak of locally summable functions , it 

will be understood that they are standard functions . We shall denote o 0 
by L (/) , or simply L ,  the set of all (standard) locally summable func-o 
tions on I. According to the preceding remarks, L is a complex vector o 
space and C is a linear subspace of L .  

3.2. Locally summable functions as distributions 

Let f be any (standard) locally summable function on I and let 
us denote by F one primitive of f: 
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F(x) = K+ ff(�) d� , (a E l, K E C ) . 

Since F is a continuous function on J, there exists a distribution 
which is the derivative of F. We shall denote by F ' (=f )  the deriva
tive of F in the functional sense and by D F the derivative of F in the 
distributional sense. Subsequently, we shall identify DF with F ' , this 
identification being based on the. following theorem: 

o 
3.2.1.  THEOREM. By assigning to each function f EL (J) the dis-
tribution f* = DF where F is a primitive of f, there is defined a one-o 
to-one linear mapping of L (J) into !iJ(J) such that: 

(i) if f is continous on J, then f= f*; 
(ii) if f if absolutely continuous on J, then Df* corresponds 

to f ' . 

PROOF. First of all ,  it must be observed that the distribution DF o 
assigned to each function f E L does not depend on the choice of the 
primitive F of f. In fact, if G is another primitive of f, then F - G is  
a constant function, so that DF = DG. o 

Now consider two functions f, g E L ;  we have to prove that if, 
to j and g corresponds the same distribution, then f = g.  Let F, 
G be primitives of f, g respectively and suppose DF = DG. Then 
F - G  E CJP1 is a constant on J, and therefore, F and G have the same 
derivatives in the functional sense (as a standard function) , that is  
f = g· 

For the remaining parts of the theorem, the proof is  quite 
trivial . •  

This theorem shows that we can identify every distribution DF, 
where F is an absolutely continuous function, with the locally sum
mable function j, which is the derivative of F in the functional sense 
3 . 1 . 1 .  We then write : 

DF =F '=f· 

Since every locally summable function f is a distribution, f will 
have derivatives of all orders (in distributions sense) . Conversely, 
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every distribution may be expressed in the form Dnf where n E  fNo o 
and f E L. For simplicity of notation, even if a locally summable 
function f is !!ot a standardfunction, we shall denote by D nf the dis

tribution D n  f .  
For example, the 8 distribution may be defined as the derivative of 

the (standardized) Heaviside function, and we may write in general : 

3.3. Functions which are not distributions and pseudofunctions 

Consider for example the function � . Since this function is 
x 

continuous on the set of all points x � 0, it is a distribution on this 
open set. But it is not a locally summable function on fR, and as we 
shall next see, it may not be interpreted as a distribution on fR. This 
function is the derivative in the ordinary sense (not defined at 0) of 
all functions f of the form: 

or shortly : 

{ log l x l + Cl ' for x > O  
f(x) = 

log l x l + c2 ' for x < O  

f(x) = log l x l + aH(x) + b  

with a = CI - C2 ' b = c2 ' where Cl and c2 are arbitrary complex numbers . 

Now, contrary to � , any function f of this form is locally summable 
x 

on fR, hence it is a distribution on fR, whose derivative is : 

Df = D log l x l + a8 

where the symbol D log I x I denotes the derivative of the locally sum
mable function log I x I on fR, in distributions sense. 
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Thus, there exist infinitely many distinct distributions on IR which 
are the derivatives of the functions f. But for any f, we have: 

Di = -l- ,  on the set 0/ all x ;z!  O. 
x 

Therefore the function � is a distribution on this set, but may 
x 

not be interpreted as a distribution on IR. 

The distribution D log I x I on IR is  called the finite part of -l
x 

and denoted by Pi -l- .  But Pi � is not a /unction, as � is not a 
x x x 

distribution. (4) 

More generally the finite part of -l- is defined to be the dis-

tribution: 
x n 

1 (_ l )n - l "-
Pf � = Dnlog l x l , n = 1 , 2 , . . . . 

x n (n - l )! 

This belongs to an important class of distributions which are 
called pseudofunctions by L. Schwartz. We shall further see other 
examples of pseudofunctions .  

3.4. Measures and functions of bounded variation 

We have already discussed the concept of measure in chapter I. 
It is not dificult to see that an equivalent definition is the following : 

A measure ji is defined on IR iff to every bounded interval J in 
IR is assigned a complex number, called the ji-measure of J and 
denoted by ji (J) or jiJ, in such a way that: 

(4) The expression "finite part" is connected with the concept of finite part of certain diver

gent integral which L. Schwartz used for defining this distribution . Note that th ere is 

no special reason to identify the function l /x with Pfllx rather than with a distribution 

Pf llx + ao, with a � O . 
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Ml. If J is expressed as the union of two disjoint intervals J1 and J2 , 
then: 

M2. If J is the union of the intervals J1 C J2 C . . .  , then : 

J.l (J) = Hm J.l (In) n -+ oo  

M3. For each bounded interval J, there exists a positive number m (J) 
such that for every partition of J into a finite number of intervals 
J1 , J2 ' • • •  , In , we have : 

n � 1J.l (Jk ) 1 s m (J) . 

Observe that the variable interval J which we are now consider
ing may be a degenerate interval [a, a] . 

We can define analogously the concept of measure on any open 
set A C IR or even on a more extensive class. But then we must con
sider bounded intervals 1, such that J C A. 

3.4.1 .  DEFINITION. If J.l is a measure on the interval I on IR, a pri
mitive of f.1 will be any function F defined on I by putting : { k + f.1 [c, x] , if x � c 

F(x) = 
k -f.1 ] x, c[ , if x < c 

where c is an arbitrary point of I and k an arbitrary complex number. 

From this definition and M 1 follows : 

3.4.2. F(b) - F(a) =J.l ] a, b] , whenever a < b. 

On the other hand, from Ml and M2 we have : 

3.4.2. F (a) -F (a - ) = J.l [a, a] , for all a E I. 

To see this we consider the case c < a and it suffices to express 
[c, a [ as the union of a sequence of intervals [c, xn ] such that 
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c < X1 < . . .  < Xn < . . .  < a and xn� a. Then by M2: 

,u [c, a [  = Hm ,u [c, xn ] = lim F(xn ) - k = F(a -)-k . Formula 3 .4 .3 . is 
Xn -+ a  

analogously proved in the case a :s  c. 
Finally, from 3 .4 .2 .  and 3 .4.3 .  follows :  

F (b ) � F (a -) = ,u [a, b] 

3.4.4. 

F(b -) - F(a) = ,u] a, b [  

for every pair of points a, b in I such that a < b. Consequently : 

3.4.5. If,u is a measure on I and if F is any primitive of,u, then ,u is 
uniquely determined by F according to formulas 3 .4 .2 . , 3 .4 . 3 .  and 
3 .4 .4 .  

Now we need a characterization of the functions which are the 
primitives of the measures on I. Let F be such a function. From M l  
and M2 it can be easily deduced (as in 3 .4 .3 . )  that F(a) = F(a+) for 
any a E l ;  i .e .  F is continuous on the right at every point of I. In 
addition, M3 implies that to each compact interval J = [a, b] , there 
exists a number m (J) such that, for every partition of J by means of 
points a =xO < x1 < . . .  < xn = b, we have : 

n �l IF(Xk ) -F(Xk -l ) 1  sm (J) . 
But this means that F is  a function of locally bounded variation on I. 

Conversely, it is easily seen that these two properties are suffi
cient to characterize primitives of measures . Thus : 

3.4.6. A necessary and sufficient condition for a function F on I to be 
a primitive of a measure ,u on I, is that F be of locally bounded vari
ation on I and continuous on the right at every point of I. Moreover 
two such functions F] and F2 are primitives of the same measure ,u if 
and only if F] -F2 is constant on I. 
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We shall denote by 011 (/) ,  or simply 011 , the set of all measures 
on I .  The sum f.l + v of two measures and the product a f.l of a 
complex number a by f.l are defined by the formulas : 

(f.l + v)(J) = f.l (J) + v(J) ,  

(af.l)(J) = a(f.lJ) .  

-
for each bounded interval J such that J C l. 

Then 011 (/) becomes a complex vector space. 

3.5. Measures as distributions. Order of a distribution 

Let 1 be any (non-degenerate) interval on fR . Observe that to each 
o -

function f E L (/) and each bounded interval J such that J C I, there 
corresponds the number JJ f and this correspondence J � JJ f is a 
measure, f.lf ' whose primitives are just the primitives of the function o 
f. Thus, every function f E L (/) determines one measure f.lf E0R(/) ,  
and if f.lf = f.lg , then f = g, since f and g have the same primitives .  
Besides it obvious that f.l( f+g) = f.l f  + f.l g  and f.l af  = af.l f for any aE C. o 0 
Thus it is natural to identify each f E L (/) with f.lf so ihat L (/) be-
comes a vector subspace of 011 (/) .  

Now, remember that every function of locally bounded variation 
on 1 is Riemann integrable on each compact subinterval J C I; hence 
locally summable on I. Then taking 3 .4 .6 .  into account, it is easily 
shown that: 

3.5.1. By assigning to each measure f.l on 1 the distribution DF, where 
F is any primitive of f.l, there is defined a one-to-one linear mapping 
of 011 (/) into !2J(/) such that if f.l is a locally summable function f on 
I, then f.l corresponds to D F = f. 

The proof is quite similar to the one of 3 . 2 . 1 .  It should however 
be observed that the primitive F of a measure is not in general a stan
dard function; but since ji is defined only at the continuity points of 
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F, with the same values ,  it is readily seen that the correspondence ,....,.., 
F -+  F ,  is one-to-one. 

Recording 3 .5 . 1 . , it is natural to identify every measure J1 on I 
with the distribution DF, where F is a primitive of /1 and to write 
/1 = DF. So mL(/) becomes a vector subspace of !!lJ(/) and more pre
cisely of C2 (I) :  

o C C L C mL C C2 c !!lJ. 

For every integer n > 0, we shall denote by mL/I) the set of all 

distributions f such that f =Dn/1 with /1 E mL(/). It is obvious that 
00 

!!lJ = U mLn · 1 

3.5.2. DEFINITION. Given a distribution f on I the least n such that 
f E mL n is called the order of f. 

For example 0, which is a distribution of rank 2 (see 2.3 . ) is of 
order 0 (i .e .  is a measure) . In general o(n) is of order n .  

3.6. Product of a continuous function by a measure and the 

Stieltjes integral 

Consider f E C(l) and /1 E mL(l) .  Let J be any bounded interval 
such that iC I and let P be any partition of J into a finite number of 
(mutually disjoint) intervals Jp , , , , In • Denote by N(P) the greatest 
lenght of the intervals J1 ' • • •  , In • Let x k be an arbitrary point in Jk and 
put : 

n 
S/J) = k f(xk ) /1 (Jk ) 

• 

Then it is a classical result that Sp(J) tends to a finite limit, S(J) , 
as N(P) -+ 0; that is ,  to every 8> 0, corresponds an £ > 0, such that: 

N(P) < e  implies I S(J) - S/J) I < o. 



45 

Moreover, it can be shown that the correspondence J --? S(J) is a 
measure on I. 

This measure is called the product of f by J1 and denoted by f J1 .  
Thus, by definition: 

( fJ1 ) (J) = S (J) . 

Previously (1. 3 .1 . )  we have adopted the convention that the 
J1-measure of an interval J should be called the integral of J1 on J and 
denoted by f, J1 .  Thus:  

S (J) = (fIl ) (J) = L fll ·  

Remember that f, f J1 is  usually called the Stieltjes integral of f 
with respect to J1 . The notation f, fdJ1 is commonly used instead of f, f J1 ,  but that notation in the theory of distributions may induce in 
error. If F is a primitive of J1 ,  it is quite natural to denote the integral 
of f with respect to J1 by : 

L f(x) dF(x) , 

and since J1 = F ' (in the distribution sense) we could also write : 

L f(x) dF(x) = L f(x)F ' (x)dx = L fll · 

But then we should have: 

L f(x)dll(x) = L fll ' , 

and this is the integral of f with respect to the distribution J1 ' that we 
shall define later on. 

As an example, let us calculate f 8, where f E C(/R) .  If we con
sider a bounded interval J such that ° E J and a partition P of J, into 
intervals J1 ' • • •  , In , then one and only one of these will contain 0, say 
� .  Thus for every choice of x k E Jk : 
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Therefore : 

n 
S/J) = � f(xk ) 8(Jk ) =f(x) . 

lim S/J) = lim f(x) = f(O) ; 
N(P) ...... 0 Xj --+ 0 

that is (f8)(J) = f (O), if 0 E J. It is easily seen that (f8)(J) = 0, if 
O $. J. Hence : 

3.6. 1 .  f8= f(0)8 . 

More generally : f(x)  8(x-a) = f(a)8(x-a) .  

3.7. Derivatives of peace-wise smooth functions 

We begin with the following proposition : 

3.7.1 .  THEOREM. Let f be afunction on an interval 1= ]a, b [ .  Sup
pose that f is absolutely continuous on two intervals ]a, c[ and ]c, b [  
and tends to finite limits as x� c- and as x� c+. Then, df!noting by 
f '  the derivative of f in the ordinary sense (not necessarily defined 
at c) and putting s=f(c+) - f(c-) , we have: 

Df= [f ' ] + s8(x- c) . 

PROOF: Since f is absolutely continuous on ]a, c [  and ]c, b[  
and has finite limits f(c-) and f(c+) i t  i s  easily seen that [ f ' ] i s  locally 
summable on I.  Hence if we put: 

g (x)=f(c-) + f [ f ' l @ dq , \;/x E I 

the function g will be absolutely continuous on I and: 

" { f(X) , for a <x < c  
g = f ,  g (x) = . 

f(x) - s, for c < x < b 

Hence f(x) = g(x) + sH(x- c) and Df = [f ' ] + s8(x- c) . •  
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Consider now a similar situation concerning a finite number of 
points C l ' . . . , cp in I and put sk = f (c; ) -f (c; ) .  Then : 

Suppose more generally that: 
i) f has a derivative of order n > O . in the ordinary sense except for 

a set of isolated points, ck (k = 0, ± 1 ,  ± 2 , . . . ); 

ii) f (n- I ) is absolutely continuous on each subinterval of I not con
taining any point ck ; 

iii) for every k = 0, ± 1 ,  . . . and every j = 0, . . . , n - 1  there exists finite 
limits f ( j )(c; ) and f ( j )(c; ) .  

Then it i s  easily deduced from 3 .7 . 1 . : 

+ 00  n- l 
3.7.2. Dn! = [j<n)] + � J� sln- l ) -j §( j )(x- c, ) , 

where sf = f ( j )(c;) -f ( j )(c; ) .  The last term in 3 .7 .2 .  (involving even
tually a sum of infinitely many distributions) denotes the distribution 
whose restriction to each of the compact intervals J C I is the sum of 

n- l 
the distributions J� st1 )-i §( j )(x- c, )  where c, E l  (in finite number) . 

For example, it i s  easily seen that: 

D2 1 x l = 20 

D3 1 x2- 1 1 = 4 (0( 1 ) -
0

(_ 1 ) + 0�_ 1 ) + 0�1 ) 
4 

D2 (x 4/3 + I x l ) = _X-2/3 + 20 .  
9 

Remarks about notation: In the preceding considerations when 
it has been necessary to distinguish the derivatives of a function f in 
the ordinary sense from its derivatives in the distributional sense, we 
have used the notation f T  in the first case and Df in the second. But 
whenever no confusion is possible we shall consider f (n) and D n f as 
perfectly equivalent. 
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